ﻻ يوجد ملخص باللغة العربية
We investigate the ground-state properties of a two-species condensate of interacting bosons in a double-well potential. Each atomic species is described by a two-space-mode Bose-Hubbard model. The coupling of the two species is controlled by the interspecies interaction $W$. To analyze the ground state when $W$ is varied in both the repulsive ($W>0$) and the attractive ($W<0$) regime, we apply two different approaches. First we solve the problem numerically i) to obtain an exact description of the ground-state structure and ii ) to characterize its correlation properties by studying (the appropriate extensions to the present case of) the quantum Fisher information, the coherence visibility and the entanglement entropy as functions of $W$. Then we approach analytically the description of the low-energy scenario by means of the Bogoliubov scheme. In this framework the ground-state transition from delocalized to localized species (with space separation for $W>0$, and mixing for $W<0$) is well reproduced. These predictions are qualitatively corroborated by our numerical results. We show that such a transition features a spectral collapse reflecting the dramatic change of the dynamical algebra of the four-mode model Hamiltonian.
We study the entanglement entropy and spectrum between components in binary Bose-Einstein condensates in $d$ spatial dimensions. We employ effective field theory to show that the entanglement spectrum exhibits an anomalous square-root dispersion rela
A complete adiabatic transport of Bose-Einstein condensate in a double-well trap is investigated within the Landau-Zener (LZ) and Gaussian Landau-Zener (GLZ) schemes for the case of a small nonlinearity, when the atomic interaction is weaker than the
We study interacting dipolar atomic bosons in a triple-well potential within a ring geometry. This system is shown to be equivalent to a three-site Bose-Hubbard model. We analyze the ground state of dipolar bosons by varying the effective on-site int
We investigate the tunneling properties of a two-species few-boson mixture in a one-dimensional triple well and harmonic trap. The mixture is prepared in an initial state with a strong spatial correlation for one species and a complete localization f
We apply the theory of Quantum Generalized Hydrodynamics (QGHD) introduced in [Phys. Rev.Lett. 124, 140603 (2020)] to derive asymptotically exact results for the density fluctuations and theentanglement entropy of a one-dimensional trapped Bose gas i