ترغب بنشر مسار تعليمي؟ اضغط هنا

Photometric Variability of the Be Star Population

120   0   0.0 ( 0 )
 نشر من قبل Jonathan Labadie-Bartz
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Be stars have generally been characterized by the emission lines in their spectra, and especially the time variability of those spectroscopic features. They are known to also exhibit photometric variability at multiple timescales, but have not been broadly compared and analyzed by that behavior. We have taken advantage of the advent of wide-field, long-baseline, and high-cadence photometric surveys that search for transiting exoplanets to perform a comprehensive analysis of brightness variations among a large number of known Be stars. The photometric data comes from the KELT transit survey, with a typical cadence of 30 minutes, baseline of up to ten years, photometric precision of about 1%, and coverage of about 60% of the sky. We analyze KELT light curves of 610 known Be stars in both the Northern and Southern hemispheres in an effort to study their variability. Consistent with other studies of Be star variability, we find most of the stars to be photometrically variable. We derive lower limits on the fraction of stars in our sample that exhibit features consistent with non-radial pulsations (25%), outbursts (36%), and long term trends in the circumstellar disk (37%), and show how these are correlated with spectral sub-type. Other types of variability, such as those owing to binarity, are also explored. Simultaneous spectroscopy for some of these systems from the Be Star Spectral Database (BeSS) allow us to better understand the physical causes for the observed variability, especially in cases of outbursts and changes in the disk.



قيم البحث

اقرأ أيضاً

The more massive counterparts of T Tauri stars, Herbig Ae/Be stars, are known to vary in a complex way with no variability mechanism clearly identified. We attempt to characterize the optical variability of HD~37806 (MWC 120) on time scales ranging b etween minutes and several years. A continuous, one-minute resolution, 21 day-long sequence of MOST (Microvariability & Oscillations of STars) satellite observations has been analyzed using wavelet, scalegram and dispersion analysis tools. The MOST data have been augmented by sparse observations over 9 seasons from ASAS (All Sky Automated Survey), by previously non-analyzed ESO (European Southern Observatory) data partly covering 3 seasons and by archival measurements dating back half a century ago. Mutually superimposed flares or accretion instabilities grow in size from about 0.0003 of the mean flux on a time scale of minutes to a peak-to-peak range of <~0.05 on a time scale of a few years. The resulting variability has properties of stochastic red noise, whose self-similar characteristics are very similar to those observed in cataclysmic binary stars, but with much longer characteristic time scales of hours to days (rather than minutes) and with amplitudes which appear to cease growing in size on time scales of tens of years. In addition to chaotic brightness variations combined with stochastic noise, the MOST data show a weakly defined cyclic signal with a period of about 1.5 days, which may correspond to the rotation of the star.
Be objects are stars of B spectral type showing lines of the Balmer series in emission. The presence of these lines is attributed to the existence of an extended envelope, disk type, around them. Some stars are observed in both the Be and normal B-ty pe spectroscopic states and they are known as transient Be stars. In this paper we show the analysis carried out on a new possible transient Be star, labelled HD 112999, using spectroscopic optical observations and photometric data.
Results from UBVRI photometric observations of the pre-main sequence star GM Cep obtained in the period April 2011 - August 2014 are reported in the paper. Presented data are a continuation of our photometric monitoring of the star started in 2008. G M Cep is located in the field of the young open cluster Trumpler 37 and over the past years it has been an object of intense photometric and spectral studies. The star shows a strong photometric variability interpreted as a possible outburst from EXor type in previous studies. Our photometric data for a period of over six years show a large amplitude variability (Delta V ~ 2.3 mag.) and several deep minimums in brightness are observed. The analysis of the collected multicolor photometric data shows the typical of UX Ori variables a color reversal during the minimums in brightness. The observed decreases in brightness have a different shape, and evidences of periodicity are not detected. At the same time, high amplitude rapid variations in brightness typical for the classical T Tauri stars also present on the light curve of GM Cep. The spectrum of GM Cep shows the typical of classical T Tauri stars wide H/alpha emission line and absorption lines of some metals. We calculate the outer radius of the H/alpha emitting region as 10.4 +/-0.5 Rsun and the accretion rate as 1.8 x 10 E-7 Msun/yr.
We analyzed the star HD 171219, one of the relatively bright Be stars observed in the seismo field of the CoRoT satellite, in order to determine its physical and pulsation characteristics. Classical Be stars are main-sequence objects of mainly B-type , whose spectra show, or had shown at some epoch, Balmer lines in emission and an infrared excess. Both characteristics are attributed to an equatorially concentrated circumstellar disk fed by non-periodic mass-loss episodes (outbursts). Be stars often show nonradial pulsation gravity modes and, as more recently discovered, stochastically excited oscillations. Applying the CLEANEST algorithm to the high-cadence and highly photometrically precise measurements of the HD 171219 light curve led us to perform an unprecedented detailed analysis of its nonradial pulsations. Tens of frequencies have been detected in the object compatible with nonradial g-modes. Additional high-resolution ground-based spectroscopic observations were obtained at La Silla (HARPS) and Haute Provence (SOPHIE) observatories during the month preceding CoRoT observations. Additional information was obtained from low-resolution spectra from the BeSS database. From spectral line fitting we determined physical parameters of the star, which is seen equator-on. We also found in the ground data the same frequencies as in CoRoT data. Additionally, we analyzed the circumstellar activity through the traditional method of V/R emission H{alpha} line variation. A quintuplet was identified at approximately 1.113 c/d (12.88 {mu}Hz) with a separation of 0.017 c/d that can be attributed to a pulsation degree l~2. The light curve shows six small- to medium-scale outbursts during the CoRoT observations. The intensity of the main frequencies varies after each outburst, suggesting a possible correlation between the nonradial pulsations regime and the feeding of the envelope.
We present ~800 days of photometric monitoring of Boyajians Star (KIC 8462852) from the All-Sky Automated Survey for Supernovae (ASAS-SN) and ~4000 days of monitoring from the All Sky Automated Survey (ASAS). We show that from 2015 to the present the brightness of Boyajians Star has steadily decreased at a rate of 6.3 +/- 1.4 mmag yr^-1, such that the star is now 1.5% fainter than it was in February 2015. Moreover, the longer time baseline afforded by ASAS suggests that Boyajians Star has also undergone two brightening episodes in the past 11 years, rather than only exhibiting a monotonic decline. We analyze a sample of ~1000 comparison stars of similar brightness located in the same ASAS-SN field and demonstrate that the recent fading is significant at >99.4% confidence. The 2015-2017 dimming rate is consistent with that measured with Kepler data for the time period from 2009 to 2013. This long-term variability is difficult to explain with any of the physical models for the stars behavior proposed to date.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا