ﻻ يوجد ملخص باللغة العربية
It is believed that stellar black holes (BHs) can be formed in two different ways: Either a massive star collapses directly into a BH without a supernova (SN) explosion, or an explosion occurs in a proto-neutron star, but the energy is too low to completely unbind the stellar envelope, and a large fraction of it falls back onto the short-lived neutron star (NS), leading to the delayed formation of a BH. Theoretical models set progenitor masses for BH formation by implosion, namely, by complete or almost complete collapse, but observational evidences have been elusive. Here are reviewed the observational insights on BHs formed by implosion without large natal kicks from: (1) the kinematics in three dimensions of space of five Galactic BH X-ray binaries (BH-XRBs), (2) the diversity of optical and infrared observations of massive stars that collapse in the dark, with no luminous SN explosions, possibly leading to the formation of BHs, and (3) the sources of gravitational waves produced by mergers of stellar BHs so far detected with LIGO. Multiple indications of BH formation without ejection of a significant amount of matter and with no natal kicks obtained from these different areas of observational astrophysics, and the recent observational confirmation of the expected dependence of BH formation on metallicity and redshift, are qualitatively consistent with the high merger rates of binary black holes (BBHs) inferred from the first detections with LIGO.
On September 14 2015, the LIGO interferometers captured a gravitational wave (GW) signal from two merging black holes (BHs), opening the era of GW astrophysics. Five BH mergers have been reported so far, three of them involving massive BHs ($gtrsim{}
The LIGO and Virgo detectors have recently directly observed gravitational waves from several mergers of pairs of stellar-mass black holes, as well as from one merging pair of neutron stars. These observations raise the hope that compact object merge
The merger rate of stellar-mass black hole binaries (sBHBs) inferred by the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO) suggests the need for an efficient source of sBHB formation. Active galactic nucleus (AGN) disks are a pro
If a black hole has a low spin value, it must double its mass to reach a high spin parameter. Although this is easily accomplished through mergers or accretion in the case of supermassive black holes in galactic centers, it is impossible for stellar-
It is speculated that a merger of two massive stellar-origin BHs in a dense stellar environment may lead to the formation of a massive BH in the pair-instability mass gap (50-135 Msun). Such a merger-formed BH is expected to typically have a high spi