ﻻ يوجد ملخص باللغة العربية
Motivated by the engineering applications of uncertainty quantification, in this work we draw connections between the notions of random quantum states and operations in quantum information with probability distributions commonly encountered in the field of orientation statistics. This approach identifies natural probability distributions that can be used in the analysis, simulation, and inference of quantum information systems. The theory of exponential families on Stiefel manifolds provides the appropriate generalization to the classical case, and fortunately there are many existing techniques for inference and sampling that exist for these distributions. Furthermore, this viewpoint motivates a number of additional questions into the convex geometry of quantum operations relative to both the differential geometry of Stiefel manifolds as well as the information geometry of exponential families defined upon them. In particular, we draw on results from convex geometry to characterize which quantum operations can be represented as the average of a random quantum operation.
We implemented the protocol of entanglement assisted orientation in the space proposed by Brukner et al (quant-ph/0603167). We used min-max principle to evaluate the optimal entangled state and the optimal direction of polarization measurements which violate the classical bound.
A measurement is deemed successful, if one can maximize the information gain by the measurement apparatus. Here, we ask if quantum coherence of the system imposes a limitation on the information gain during quantum measurement. First, we argue that t
This series of introductory lectures consists of two parts. In the first part, I rapidly review the basic notions of quantum physics and many primitives of quantum information (i.e. notions that one must be somehow familiar with in the field, like cl
The possibility of discriminating the statistics of a thermal bath using indirect measurements performed on quantum probes is presented. The scheme relies on the fact that, when weakly coupled with the environment of interest, the transient evolution
Recently, Zhang {em et al.} [PRA, {bf 75}, 062102 (2007)] extended Kieus interesting work on the quantum Otto engine [PRL, {bf 93}, 140403 (2004)] by considering as working substance a bipartite quantum system $AB$ composed of subsystems $A$ and $B$.