ﻻ يوجد ملخص باللغة العربية
Microscopic liquid brines, especially calcium-perchlorate could emerge by deliquescence on Mars during night time hours. Using climate model computations and orbital humidity observations, the ideal periods and their annual plus daily characteristics at various past, current and future landing sites were compared. Such results provide context for future analysis and targeting the related observations by the next missions for Mars. Based on the analysis, at most (but not all) past missions landing sites, microscopic brine could emerge during night time for different durations. Analysing the conditions at ExoMars rovers primary landing site at Oxia Planum, the best annual period was found to be between $L_s$ 115 - 225, and in $Localhspace{0.1cm} Time$ 2 - 5, after midnight. In an ideal case, 4 hours of continuous liquid phase can emerge there. Local conditions might cause values to differ from those estimated by the model. Thermal inertia could especially make such differences (low TI values favour fast cooling and $textrm{H}_2textrm{O}$ cold trapping at loose surfaces) and the concentration of calcium-perchlorate salt in the regolith also influences the process (it might occur preferentially at long-term exposed surfaces without recent loose dust coverage). These factors should be taken into account while targeting future liquid water observations on Mars.
The Mars Science Laboratory (MSL) Rover Environmental Monitoring Station (REMS) has now made continuous in-situ meteorological measurements for several martian years at Gale crater, Mars. Of importance in the search for liquid formation are REMS meas
The Lunar Geophysical Network (LGN) mission is proposed to land on the Moon in 2030 and deploy packages at four locations to enable geophysical measurements for 6-10 years. Returning to the lunar surface with a long-lived geophysical network is a key
Since the Apollo program or earlier it has been widely believed that the lunar regolith was compacted through vibrations including nearby impact events, thermal stress release in the regolith, deep moon quakes, and shallow moon quakes. Experiments ha
Identification of the main planet formation site is fundamental to understanding how planets form and migrate to the current locations. We consider the heavy-element content trend of observed exoplanets derived from improved measurements of mass and
The history of rivers on Mars is an important constraint on Martian climate evolution. The timing of relatively young, alluvial fan-forming rivers is especially important, as Mars Amazonian atmosphere is thought to have been too thin to consistently