ﻻ يوجد ملخص باللغة العربية
Graphene and other two-dimensional materials display remarkable optical properties, including a simple light transparency of $T approx 1 - pi alpha$ for light in the visible region. Most theoretical rationalizations of this universal opacity employ a model coupling light to the electrons crystal momentum and put emphasis on the linear dispersion of the graphene bands. However, such a formulation of interband absorption is not allowable within band structure theory, because it conflates the crystal momentum label with the canonical momentum operator. We show that the physical origin of the optical behavior of graphene can be explained within a straightforward picture with the correct use of canonical momentum coupling. Its essence lies in the two-dimensional character of the density of states rather than in the precise dispersion relation, and therefore the discussion is applicable to other systems such as semiconductor membranes. At higher energies the calculation predicts a peak corresponding to a van Hove singularity as well as a specific asymmetry in the absorption spectrum of graphene, in agreement with previous results.
After the first unequivocal demonstration of spin transport in graphene (Tombros et al., 2007), surprisingly at room temperature, it was quickly realized that this novel material was relevant for both fundamental spintronics and future applications.
The analysis of the electronic properties of strained or lattice deformed graphene combines ideas from classical condensed matter physics, soft matter, and geometrical aspects of quantum field theory (QFT) in curved spaces. Recent theoretical and exp
We demonstrate how weak hybridization can lead to apparent heavy doping of 2d materials even in case of physisorptive binding. Combining ab-intio calculations and a generic model we show that strong reshaping of Fermi surfaces and changes in Fermi vo
In atomically thin transition metal dichalcogenide semiconductors, there is a crossover from indirect to direct bandgap as the thickness drops to one monolayer, which comes with a fast increase of the photoluminescence signal. Here, we show that for
Extreme confinement of electromagnetic energy by phonon polaritons holds the promise of strong and new forms of control over the dynamics of matter. To bring such control to the atomic-scale limit, it is important to consider phonon polaritons in two