ترغب بنشر مسار تعليمي؟ اضغط هنا

Second-order decoherence mechanisms of a transmon qubit probed with thermal microwave states

121   0   0.0 ( 0 )
 نشر من قبل Jan Goetz
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Thermal microwave states are omnipresent noise sources in superconducting quantum circuits covering all relevant frequency regimes. We use them as a probe to identify three second-order decoherence mechanisms of a superconducting transmon. First, we quantify the efficiency of a resonator filter in the dispersive Jaynes-Cummings regime and find evidence for parasitic loss channels. Second, we probe second-order noise in the low-frequency regime and demonstrate the expected $T^{3}$ temperature dependence of the qubit dephasing rate. Finally, we show that qubit parameter fluctuations due to two-level states are enhanced under the influence of thermal microwave states. In particular, we experimentally confirm the $T^{2}$-dependence of the fluctuation spectrum expected for noninteracting two-level states.


قيم البحث

اقرأ أيضاً

Single-photon sources are of great interest because they are key elements in different promising applications of quantum technologies. Here we demonstrate a highly efficient tunable on-demand microwave single-photon source based on a transmon qubit w ith the intrinsic emission efficiency above 98$%$. The high efficiency ensures a negligible pure dephasing rate and the necessary condition for generation of indistinguishable photons. We provide an extended discussion and analysis of the efficiency of the photon generation. To further experimentally confirm the single-photon property of the source, correlation functions of the emission field are also measured using linear detectors with a GPU-enhanced signal processing technique. Our results experimentally demonstrate that frequency tunability and negligible pure dephasing rate can be achieved simultaneously and show that such a tunable single-photon source can be good for various practical applications in quantum communication, simulations and information processing in the microwave regime.
Using circuit QED, we consider the measurement of a superconducting transmon qubit via a coupled microwave resonator. For ideally dispersive coupling, ringing up the resonator produces coherent states with frequencies matched to transmon energy state s. Realistic coupling is not ideally dispersive, however, so transmon-resonator energy levels hybridize into joint eigenstate ladders of the Jaynes-Cummings type. Previous work has shown that ringing up the resonator approximately respects this ladder structure to produce a coherent state in the eigenbasis (a dressed coherent state). We numerically investigate the validity of this coherent state approximation to find two primary deviations. First, resonator ring-up leaks small stray populations into eigenstate ladders corresponding to different transmon states. Second, within an eigenstate ladder the transmon nonlinearity shears the coherent state as it evolves. We then show that the next natural approximation for this sheared state in the eigenbasis is a dressed squeezed state, and derive simple evolution equations for such states using a hybrid phase-Fock-space description.
244 - X. Y. Jin , A. Kamal , A. P. Sears 2014
We present a systematic study of the first excited-state population in a 3D transmon qubit mounted in a dilution refrigerator with a variable temperature. Using a modified version of the protocol developed by Geerlings et al. [1], we observe the exci ted-state population to be consistent with a Maxwell-Boltzmann distribution, i.e., a qubit in thermal equilibrium with the refrigerator, over the temperature range 35-150 mK. Below 35 mK, the excited-state population saturates to 0.1%, near the resolution of our measurement. We verified this result using a flux qubit with ten-times stronger coupling to its readout resonator. We conclude that these qubits have effective temperature T_{eff} = 35 mK. Assuming T_{eff} is due solely to hot quasiparticles, the inferred qubit lifetime is 108 us and in plausible agreement with the measured 80 us.
330 - John M. Martinis 2021
Analytical formulas are presented for simplified but useful qubit geometries that predict surface dielectric loss when its thickness is much less than the metal thickness, the limiting case needed for real devices. These formulas can thus be used to precisely predict loss and optimize the qubit layout. Surprisingly, a significant fraction of surface loss comes from the small wire that connects the Josephson junction to the qubit capacitor. Tapering this wire is shown to significantly lower its loss. Also predicted are the size and density of the two-level state (TLS) spectrum from individual surface dissipation sites.
A standard theory of thermodynamics states that a quantum system in contact with a thermal environment relaxes to the equilibrium state known as the Gibbs state wherein decoherence occurs in the systems energy eigenbasis. When the interaction between the system and environment is strong, a different equilibrium state can be reached that is not diagonal in the system energy eigenbasis. Zureks theory of einselection predicts that the decoherence takes place in the so-called pointer basis under the strong coupling regime, which can be viewed as continuous measurement of the system by the environment. The thermal state under the strong coupling regime is thus expected to be diagonal in the pointer states rather than energy eigenstates. We have postulated that the thermals state in the strong coupling limit is a Gibbs state projected onto the pointer basis and have demonstrated this with a simple model of single qubit strongly interacting with a bosonic environment.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا