ترغب بنشر مسار تعليمي؟ اضغط هنا

Radiative Transfer Modeling of Radio-band Linear Polarization Observations as a Probe of the Physical Conditions in the Jets of Gamma-ray Flaring Blazars

352   0   0.0 ( 0 )
 نشر من قبل Margo Aller
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Since the mid-1980s the shock-in-jet model has been the preferred paradigm to explain radio-band flaring in blazar jets. We describe our radiative transfer model incorporating relativistically-propagating shocks, and illustrate how the 4.8, 8, and 14.5 GHz linear polarization and total flux density data from the University of Michigan monitoring program, in combination with the model, constrain jet flow conditions and shock attributes. Results from strong Fermi-era flares in 4 blazars with widely-ranging properties are presented. Additionally, to investigate jet evolution on decadal time scales we analyze 3 outbursts in OT 081 spanning nearly 3 decades and find intrinsic changes attributable to flow changes at a common spatial location, or, alternatively, to a change in the jet segment viewed. The models success in reproducing these data supports a scenario in which relativistic shocks compress a plasma with an embedded passive, initially-turbulent magnetic field, with additional ordered magnetic field components, one of which may be helical.

قيم البحث

اقرأ أيضاً

54 - Alan P. Marscher 2014
A single measurement of linear polarization of a nonthermal source provides direct information about the mean direction and level of ordering of the magnetic field. Monitoring of the polarization in blazars, combined with millimeter-wave VLBI imaging in both total and polarized intensity, has the potential to determine the geometry of the magnetic field. This is a key probe of the physical processes in the relativistic jet, such as ordered field components, turbulence, magnetic reconnections, magnetic collimation and acceleration of the jet flow, particle acceleration, and radiative processes that produce extremely luminous, highly variable nonthermal emission. Well-sampled monitoring observations of multi-waveband flux and radio-optical polarization of blazars show a variety of behavior. In some cases, the observed polarization patterns appear systematic, while in others randomness dominates. Explanations involve helical magnetic fields, turbulence, and perhaps particle acceleration that depends on the angle between the magnetic field and shock fronts that might be present. Simulations from the authors TEMZ model, with turbulent plasma crossing a standing conical shock in the jet, show that a mixture of turbulent and toroidal magnetic field can produce the level of polarization variability that is observed, even when the two field components are roughly equal.
Radio polarimetry is an invaluable tool to investigate the physical conditions and variability processes in active galactic nuclei (AGN) jets. However, detecting their linear and circular polarization properties is a challenging endeavor due to their low levels and possible depolarization effects. We have developed an end-to-end data analysis methodology to recover the polarization properties of unresolved sources with high accuracy. It has been applied to recover the linear and circular polarization of 87 AGNs measured by the F-GAMMA program from July 2010 to January 2015 with a mean cadence of 1.3 months. Their linear polarization was recovered at four frequencies between 2.64 and 10.45 GHz and the circular polarization at 4.85 and 8.35 GHz. The physical conditions required to reproduce the observed polarization properties and the processes which induce their variability were investigated with a full-Stokes radiative transfer code which emulates the synchrotron emission of modeled jets. The model was used to investigate the conditions needed to reproduce the observed polarization behavior for the blazar 3C 454.3, assuming that the observed variability is attributed to evolving internal shocks propagating downstream.
63 - Y. Urata , K. Toma , K. Huang 2019
We report the first detection of radio polarization of a GRB afterglow with the first intensive combined use of telescopes in the millimeter and submillimeter ranges for GRB171205A. The linear polarization degree in the millimeter band at the sub-per cent level ($0.27 pm 0.04%$) is lower than those observed in late-time optical afterglows (weighted average of $sim 1%$). The Faraday depolarization by non-accelerated, cool electrons in the shocked region is one of possible mechanisms for the low value. In this scenario, larger total energy by a factor of $sim 10$ than ordinary estimate without considering non-accelerated electrons is required. The polarization position angle varies by at least 20 degrees across the millimeter band, which is not inconsistent with this scenario. This result indicates that polarimetry in the millimeter and submillimeter ranges is a unique tool for investigating GRB energetics, and coincident observations with multiple frequencies or bands would provide more accurate measurements of the non-accelerated electron fraction.
Time-variable polarization is an extremely valuable observational tool to probe the dynamical physical conditions of blazar jets. Since 2008, we have been monitoring the flux and linear polarization of a sample of gamma-ray bright blazars at optical frequencies. Some of the observations were performed on nightly or intra-night time-scales in four optical bands, providing information on the frequency and time dependence of the polarization. The observed behavior is similar to that found in simulations of turbulent plasma in a relativistic jet that contains a standing shock and/or a helical background magnetic field. Similar simulations predict the characteristics of X-ray synchrotron polarization of blazars that will be measured in the future by the Imaging X-ray Polarimetry Explorer (IXPE).
Recent detection of the neutrino events IceCube-170922A, 13 muon-neutrino events observed in 2014-2015 and IceCube-141209A by IceCube observatory from the Blazars, namely TXS 0506+056, PKS 0502+049/TXS 0506+056 and GB6 J1040+0617 respectively in the state of enhanced gamma-ray emission, indicates the acceleration of cosmic rays in the blazar jets. The photo-meson ($pgamma$) interaction cannot explain the IceCube observations of 13 neutrino events. The non-detection of broadline emission in the optical spectra of the IceCube blazars, however, question the hadronuclear (pp) interaction interpretation through relativistic jet meets with high density cloud. In this work, we investigate the proton blazar model in which the non-relativistic protons that come into existence under the charge neutrality condition of the blazar jet can offer sufficient target matter for $pp$ interaction with shock-accelerated protons, to describe the observed high-energy gamma-rays and neutrino signal from the said blazars. Our findings suggest that the model can explain consistently the observed electromagnetic spectrum in combination with appropriate number of neutrino events from the corresponding blazars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا