ﻻ يوجد ملخص باللغة العربية
Warped string compactifications are central to many attempts to stabilize moduli and connect string theory with cosmology and particle phenomenology. We present a first-principles derivation of the low-energy 4D effective theory from dimensional reduction of a D3-brane in a warped Calabi-Yau compactification of type IIB string theory with imaginary self-dual 3-form flux, including effects of D3-brane motion beyond the probe approximation, and find the metric on the moduli space of brane positions, the universal volume modulus, and axions descending from the 4-form potential. As D3-branes may be considered as carrying either electric or magnetic charges for the self-dual 5-form field strength, we present calculations in both duality frames. Our results are consistent with, but extend significantly, earlier results on the low-energy effective theory arising from D3-branes in string compactifications.
We revisit the idea that the quantum dynamics of open strings ending on $N$ D3-branes in the large $N$ limit can be described at large `t Hooft coupling by classical closed string theory in the background created by the D3-branes in asymptotically fl
We study loop corrections to scattering amplitudes in the world-volume theory of a probe D3-brane, which is described by the supersymmetric Dirac-Born-Infeld theory. We show that the D3-brane loop superamplitudes can be obtained from the tree-level s
Lagrangians of the Abelian Gauge Theory and its dual are related in terms of a shifted action. We show that in d=4 constrained Hamiltonian formulation of the shifted action yields Hamiltonian description of the dual theory, without referring to its L
We construct families of supersymmetric AdS$_3times Y_7$ and AdS$_3times Y_8$ solutions to type IIB string theory and M-theory, respectively. Here $Y_7$ is an $S^5$ fibration over $Sigma$, while $Y_8$ is an $S^4$ fibration over $Sigma_gtimes Sigma$,
We discuss the worldvolume description of intersecting D-branes, including the metric on the moduli space of deformations. We impose a choice of static gauge that treats all the branes on an equal footing and describes the intersection of D-branes as