ترغب بنشر مسار تعليمي؟ اضغط هنا

$P_1$-nonconforming divergence-free finite element method on square meshes for Stokes equations

98   0   0.0 ( 0 )
 نشر من قبل Chunjae Park
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English
 تأليف Chunjae Park




اسأل ChatGPT حول البحث

Recently, the $P_1$-nonconforming finite element space over square meshes has been proved stable to solve Stokes equations with the piecewise constant space for velocity and pressure, respectively. In this paper, we will introduce its locally divergence-free subspace to solve the elliptic problem for the velocity only decoupled from the Stokes equation. The concerning system of linear equations is much smaller compared to the Stokes equations. Furthermore, it is split into two smaller ones. After solving the velocity first, the pressure in the Stokes problem can be obtained by an explicit method very rapidly.



قيم البحث

اقرأ أيضاً

82 - Haoran Liu , Michael Neilan , 2021
This paper constructs and analyzes a boundary correction finite element method for the Stokes problem based on the Scott-Vogelius pair on Clough-Tocher splits. The velocity space consists of continuous piecewise quadratic polynomials, and the pressur e space consists of piecewise linear polynomials without continuity constraints. A Lagrange multiplier space that consists of continuous piecewise quadratic polynomials with respect to boundary partition is introduced to enforce boundary conditions as well as to mitigate the lack of pressure-robustness. We prove several inf-sup conditions, leading to the well-posedness of the method. In addition, we show that the method converges with optimal order and the velocity approximation is divergence free.
In this paper, a stabilized extended finite element method is proposed for Stokes interface problems on unfitted triangulation elements which do not require the interface align with the triangulation. The velocity solution and pressure solution on ea ch side of the interface are separately expanded in the standard nonconforming piecewise linear polynomials and the piecewise constant polynomials, respectively. Harmonic weighted fluxes and arithmetic fluxes are used across the interface and cut edges (segment of the edges cut by the interface), respectively. Extra stabilization terms involving velocity and pressure are added to ensure the stable inf-sup condition. We show a priori error estimates under additional regularity hypothesis. Moreover, the errors {in energy and $L^2$ norms for velocity and the error in $L^2$ norm for pressure} are robust with respect to the viscosity {and independent of the location of the interface}. Results of numerical experiments are presented to {support} the theoretical analysis.
146 - B. Ayuso de Dios , , K. Lipnikov 2014
We introduce the nonconforming Virtual Element Method (VEM) for the approximation of second order elliptic problems. We present the construction of the new element in two and three dimensions, highlighting the main differences with the conforming V EM and the classical nonconforming finite element methods. We provide the error analysis and establish the equivalence with a family of mimetic finite difference methods.
In this work we construct a low-order nonconforming approximation method for linear elasticity problems supporting general meshes and valid in two and three space dimensions. The method is obtained by hacking the Hybrid High-Order method, that requir es the use of polynomials of degree $kge1$ for stability. Specifically, we show that coercivity can be recovered for $k=0$ by introducing a novel term that penalises the jumps of the displacement reconstruction across mesh faces. This term plays a key role in the fulfillment of a discrete Korn inequality on broken polynomial spaces, for which a novel proof valid for general polyhedral meshes is provided. Locking-free error estimates are derived for both the energy- and the $L^2$-norms of the error, that are shown to convergence, for smooth solutions, as $h$ and $h^2$, respectively (here, $h$ denotes the meshsize). A thorough numerical validation on a complete panel of two- and three-dimensional test cases is provided.
The paper is devoted to the spectral analysis of effective preconditioners for linear systems obtained via a Finite Element approximation to diffusion-dominated convection-diffusion equations. We consider a model setting in which the structured finit e element partition is made by equi-lateral triangles. Under such assumptions, if the problem is coercive, and the diffusive and convective coefficients are regular enough, then the proposed preconditioned matrix sequences exhibit a strong clustering at unity, the preconditioning matrix sequence and the original matrix sequence are spectrally equivalent, and the eigenvector matrices have a mild conditioning. The obtained results allow to show the optimality of the related preconditioned Krylov methods. %It is important to stress that The interest of such a study relies on the observation that automatic grid generators tend to construct equi-lateral triangles when the mesh is fine enough. Numerical tests, both on the model setting and in the non-structured case, show the effectiveness of the proposal and the correctness of the theoretical findings.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا