ترغب بنشر مسار تعليمي؟ اضغط هنا

Ab initio calculations to support accurate modelling of the rovibronic spectroscopy calculations of vanadium monoxide (VO)

110   0   0.0 ( 0 )
 نشر من قبل Laura McKemmish K
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Accurate knowledge of the rovibronic near-infrared and visible spectra of vanadium monoxide (VO) is very important for studies of cool stellar and hot planetary atmospheres. Here, the required ab initio dipole moment and spin-orbit coupling curves for VO are produced. This data forms the basis of a new VO line list considering 13 different electronic states and containing over 277 million transitions. Open shell transition, metal diatomics are challenging species to model through ab initio quantum mechanics due to the large number of low-lying electronic states, significant spin-orbit coupling and strong static and dynamic electron correlation. Multi-reference configuration interaction methodologies using orbitals from a complete active space self-consistent-field (CASSCF) calculation are the standard technique for these systems. We use different state-specific or minimal-state CASSCF orbitals for each electronic state to maximise the calculation accuracy. The off-diagonal dipole moment controls the intensity of electronic transitions. We test finite-field off-diagonal dipole moments, but found that (1) the accuracy of the excitation energies were not sufficient to allow accurate dipole moments to be evaluated and (2) computer time requirements for perpendicular transitions were prohibitive. The best off-diagonal dipole moments are calculated using wavefunctions with different CASSCF orbitals.



قيم البحث

اقرأ أيضاً

Reliable quantum chemical methods for the description of molecules with dense-lying frontier orbitals are needed in the context of many chemical compounds and reactions. Here, we review developments that led to our newcomputational toolbo x which imp lements the quantum chemical density matrix renormalization group in a second-generation algorithm. We present an overview of the different components of this toolbox.
We propose a novel storage scheme for three-nucleon (3N) interaction matrix elements relevant for the normal-ordered two-body approximation used extensively in ab initio calculations of atomic nuclei. This scheme reduces the required memory by approx imately two orders of magnitude, which allows the generation of 3N interaction matrix elements with the standard truncation of $E_{3max}=28$, well beyond the previous limit of 18. We demonstrate that this is sufficient to obtain ground-state energies in $^{132}$Sn converged to within a few MeV with respect to the $E_{3max}$ truncation. In addition, we study the asymptotic convergence behavior and perform extrapolations to the un-truncated limit. Finally, we investigate the impact of truncations made when evolving free-space 3N interactions with the similarity renormalization group. We find that the contribution of blocks with angular momentum $J_{rm rel}>9/2$ is dominated by a basis-truncation artifact which vanishes in the large-space limit, so these computationally expensive components can be neglected. For the two sets of nuclear interactions employed in this work, the resulting binding energy of $^{132}$Sn agrees with the experimental value within theoretical uncertainties. This work enables converged ab initio calculations of heavy nuclei.
A degenerate perturbation $kcdot p$ approach for effective mass calculations is implemented in the all-electron density functional theory (DFT) package WIEN2k. The accuracy is tested on major group IVA, IIIA-VA, and IIB-VIA semiconductor materials. T hen, the effective mass in graphene and CuI with defects is presented as illustrative applications. For states with significant Cu-d character additional local orbitals with higher principal quantum numbers (more radial nodes) have to be added to the basis set in order to converge the results of the perturbation theory. Caveats related to a difference between velocity and momentum matrix elements are discussed in the context of application of the method to non-local potentials, such as Hartree-Fock/DFT hybrid functionals and DFT+U.
The HeH$^+$ cation undergoes dissociative recombination with a free electron to produce neutral He and H fragments. We present calculations using ab initio quantum defects and Fanos rovibrational frame transformation technique, along with the methodo logy of PRL 89, 263003 (2002), to obtain the recombination rate both in the low-energy (1-300 meV) and high-energy (ca. 0.6 hartree) regions. We obtain very good agreement with experimental results, demonstrating that this relatively simple method is able to reproduce observed rates for both indirect dissociative recombination, driven by rovibrationally autoionizing states in the low-energy region, and direct dissociative recombination, driven by electronically autoionizing Rydberg states attached to higher-energy excited cation channels.
The GRIFFIN spectrometer at TRIUMF-ISAC has been used to study excited states and transitions in $^{50}$Sc following the $beta$-decay of $^{50}$Ca. Branching ratios were determined from the measured $gamma$-ray intensities, and angular correlations o f $gamma$ rays have been used to firmly assign the spins of excited states. The presence of an isomeric state that decays by an $M3$ transition with a $B(M3)$ strength of 13.6(7),W.u. has been confirmed. We compare with the first {it ab initio} calculations of $B(M3$) strengths in light and medium-mass nuclei from the valence-space in-medium similarity renormalization group approach, using consistently derived effective Hamiltonians and $M3$ operator. The experimental data are well reproduced for isoscalar $M3$ transitions when using bare $g$-factors, but the strength of isovector $M3$ transitions are found to be underestimated by an order of magnitude.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا