ﻻ يوجد ملخص باللغة العربية
Dickes original thought experiment with two spins coupled to a photon mode has recently been experimentally realized. We propose extending this experiment to N spins and show that it naturally gives rise to highly entangled states. In particular, it gives rise to dark states which have resonating valence bond (RVB) character. We first consider a system of N two level spins in a cavity with only one spin in the excited state. This initial state is a linear combination of a dark state and a bright state. We point out the dark state is a coherent superposition of singlets with resonating valence bond character. We show that the coupling to the photon mode takes the spin system into a mixed state with an entangled density matrix. We next consider an initial state with half of the spins in the excited state. We show that there is a non-zero probability for this to collapse into a dark state with RVB character. In the lossy cavity limit, if no photon is detected within several decay time periods, we may deduce that the spin system has collapsed onto the dark RVB state. We show that the probability for this scales as 2/N, making it possible to generate RVB states of 20 spins or more.
Resonating valence bond (RVB) states are a class of entangled quantum many body wavefunctions with great significance in condensed matter physics. We propose a scheme to synthesize a family of RVB states using a cavity QED setup with two-level atoms
We investigate the entanglement properties of resonating-valence-bond states on two and higher dimensional lattices, which play a significant role in our understanding of various many-body systems. We show that these states are genuinely multipartite
The trimer resonating valence bond (tRVB) state consisting of an equal-weight superposition of trimer coverings on a square lattice is proposed. A model Hamiltonian of the Rokhsar-Kivelson type for which the tRVB becomes the exact ground state is wri
We apply a variational wave function capable of describing qualitatively and quantitatively the so called resonating valence bond in realistic materials, by improving standard ab initio calculations by means of quantum Monte Carlo methods. In this fr
A central idea in strongly correlated systems is that doping a Mott insulator leads to a superconductor by transforming the resonating valence bonds (RVBs) into spin-singlet Cooper pairs. Here, we argue that a spin-triplet RVB (tRVB) state, driven by