ترغب بنشر مسار تعليمي؟ اضغط هنا

A Very Bright, Very Hot, and Very Long Flaring Event from the M Dwarf Binary System DG CVn

65   0   0.0 ( 0 )
 نشر من قبل Rachel Osten
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Rachel A. Osten




اسأل ChatGPT حول البحث

On April 23, 2014, the Swift satellite responded to a hard X-ray transient detected by its Burst Alert Telescope, which turned out to be a stellar flare from a nearby, young M dwarf binary DG~CVn. We utilize observations at X-ray, UV, optical, and radio wavelengths to infer the properties of two large flares. The X-ray spectrum of the primary outburst can be described over the 0.3-100 keV bandpass by either a single very high temperature plasma or a nonthermal thick-target bremsstrahlung model, and we rule out the nonthermal model based on energetic grounds. The temperatures were the highest seen spectroscopically in a stellar flare, at T$_{X}$ of 290 MK. The first event was followed by a comparably energetic event almost a day later. We constrain the photospheric area involved in each of the two flares to be $>$10$^{20}$ cm$^{2}$, and find evidence from flux ratios in the second event of contributions to the white light flare emission in addition to the usual hot, T$sim$10$^{4}$K blackbody emission seen in the impulsive phase of flares. The radiated energy in X-rays and white light reveal these events to be the two most energetic X-ray flares observed from an M dwarf, with X-ray radiated energies in the 0.3-10 keV bandpass of 4$times$10$^{35}$ and 9$times$10$^{35}$ erg, and optical flare energies at E$_{V}$ of 2.8$times$10$^{34}$ and 5.2$times$10$^{34}$ erg, respectively. The results presented here should be integrated into updated modelling of the astrophysical impact of large stellar flares on close-in exoplanetary atmospheres.



قيم البحث

اقرأ أيضاً

In this paper, we derive the fundamental properties of 1SWASPJ011351.29+314909.7 (J0113+31), a metal-poor (-0.40 +/- 0.04 dex), eclipsing binary in an eccentric orbit (~0.3) with an orbital period of ~14.277 d. Eclipsing M dwarfs orbiting solar-type stars (EBLMs), like J0113+31, have been identified from WASP light curves and follow-up spectroscopy in the course of the transiting planet search. We present the first binary of the EBLM sample to be fully analysed, and thus, define here the methodology. The primary component with a mass of 0.945 +/- 0.045 Msun has a large radius (1.378 +/- 0.058 Rsun) indicating that the system is quite old, ~9.5 Gyr. The M-dwarf secondary mass of 0.186 +/- 0.010 Msun and radius of 0.209 +/- 0.011 Rsun are fully consistent with stellar evolutionary models. However, from the near-infrared secondary eclipse light curve, the M dwarf is found to have an effective temperature of 3922 +/- 42 K, which is ~600 K hotter than predicted by theoretical models. We discuss different scenarios to explain this temperature discrepancy. The case of J0113+31 for which we can measure mass, radius, temperature and metallicity, highlights the importance of deriving mass, radius and temperature as a function of metallicity for M dwarfs to better understand the lowest mass stars. The EBLM Project will define the relationship between mass, radius, temperature and metallicity for M dwarfs providing important empirical constraints at the bottom of the main sequence.
146 - Philip W. Lucas 2010
We report the discovery of a very cool, isolated brown dwarf, UGPS 0722-05, with the UKIDSS Galactic Plane Survey. The near-infrared spectrum displays deeper H2O and CH4 troughs than the coolest known T dwarfs and an unidentified absorption feature a t 1.275 um. We provisionally classify the object as a T10 dwarf but note that it may in future come to be regarded as the first example of a new spectral type. The distance is measured by trigonometric parallax as d=4.1{-0.5}{+0.6} pc, making it the closest known isolated brown dwarf. With the aid of Spitzer/IRAC we measure H-[4.5] = 4.71. It is the coolest brown dwarf presently known -- the only known T dwarf that is redder in H-[4.5] is the peculiar T7.5 dwarf SDSS J1416+13B, which is thought to be warmer and more luminous than UGPS 0722-05. Our measurement of the luminosity, aided by Gemini/T-ReCS N band photometry, is L = 9.2 +/- 3.1x10^{-7} Lsun. Using a comparison with well studied T8.5 and T9 dwarfs we deduce Teff=520 +/- 40 K. This is supported by predictions of the Saumon & Marley models. With apparent magnitude J=16.52, UGPS 0722-05 is the brightest T dwarf discovered by UKIDSS so far. It offers opportunities for future study via high resolution near-infrared spectroscopy and spectroscopy in the thermal infrared.
119 - Markus Kasper 2007
The recently discovered star SCR 1845-6357 is the first late M/T dwarf binary discovered. SCR 1845 is a particular object due to its tight orbit (currently around 4 AU) and its proximity to the Sun (3.85 pc). We present spatially resolved VLT/NACO im ages and low resolution spectra of SCR 1845 in the J, H and K near-infrared bands. Since the T dwarf companion, SCR 1845B, is so close to the primary SCR 1845A, orbital motion is evident even within a year. Following the orbital motion, the binarys mass can be measured accurately within a decade, making SCR 1845B a key T-dwarf mass-luminosity calibrator. The NIR spectra allow for accurate determination of spectral type and also for rough estimates of the objects physical parameters. The spectral type of SCR 1845B is determined by direct comparison of the flux calibrated JHK spectra with T dwarf standard template spectra and also by NIR spectral indices obtained from synthetic photometry. Constrained values for surface gravity, effective temperature and metallicity are derived by comparison with model spectra. Our data prove that SCR 1845B is a brown dwarf of spectral type T6 that is co-moving with and therefore gravitationally bound to the M8.5 primary. Fitting the NIR spectrum of SCR 1845B to model spectra yields an effective temperature of about 950K and a surface gravity log(g)=5.1 (cgs) assuming solar metallicity. Mass and age of SCR 1845B are in the range 40 to 50 Jupiter masses and 1.8 to 3.1 Gyr.
We study the evolution of close binary systems in order to account for the existence of the recently observed binary system containing the most massive millisecond pulsar ever detected, PSR J0740+6620, and its ultra-cool helium white dwarf companion. In order to find a progenitor for this object we compute the evolution of several binary systems composed by a neutron star and a normal donor star employing our stellar code. We assume conservative mass transfer. We also explore the effects of irradiation feedback on the system. We find that irradiated models also provide adequate models for the millisecond pulsar and its companion, so both irradiated and non irradiated systems are good progenitors for PSR J0740+6620. Finally, we obtain a binary system that evolves and accounts for the observational data of the system composed by PSR J0740+6620 (i.e. orbital period, mass, effective temperature and inferred metallicity of the companion, and mass of the neutron star) in a time scale smaller than the age of the Universe. In order to reach an effective temperature as low as observed, the donor star should have an helium envelope as demanded by observations.
A large population of fragile, wide (> 1000 AU) binary systems exists in the Galactic field and halo. These wide binary stars cannot be primordial because of the high stellar density in star forming regions, while formation by capture in the Galactic field is highly improbable. We propose that these binary systems were formed during the dissolution phase of star clusters (see Kouwenhoven et al. 2010, for details). Stars escaping from a dissolving star cluster can have very similar velocities, which can lead to the formation of a wide binary systems. We carry out N-body simulations to test this hypothesis. The results indicate that this mechanism explains the origin of wide binary systems in the Galaxy. The resulting wide binary fraction and semi-major axis distribution depend on the initial conditions of the dissolving star cluster, while the distributions in eccentricity and mass ratio are universal. Finally, since most stars are formed in (relatively tight) primordial binaries, we predict that a large fraction of the wide binary stars are in fact higher-order multiple systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا