ﻻ يوجد ملخص باللغة العربية
It is well-known that entire functions whose spectrum belongs to a fixed bounded set $S$ admit real uniformly discrete uniqueness sets $Lambda$. We show that the same is true for much wider spaces of continuous functions. In particular, Sobolev spaces have this property whenever $S$ is a set of infinite measure having periodic gaps. The periodicity condition is crucial. For sets $S$ with randomly distributed gaps, we show that the uniformly discrete sets $Lambda$ satisfy a strong non-uniqueness property: Every discrete function $c(lambda)in l^2(Lambda)$ can be interpolated by an analytic $L^2$-function with spectrum in $S$.
This paper builds upon two key principles behind the Bourgain-Dyatlov quantitative uniqueness theorem for functions with Fourier transform supported in an Ahlfors regular set. We first provide a characterization of when a quantitative uniqueness theo
We prove new $ell ^{p} (mathbb Z ^{d})$ bounds for discrete spherical averages in dimensions $ d geq 5$. We focus on the case of lacunary radii, first for general lacunary radii, and then for certain kinds of highly composite choices of radii. In par
For a function $fcolon [0,1]tomathbb R$, we consider the set $E(f)$ of points at which $f$ cuts the real axis. Given $fcolon [0,1]tomathbb R$ and a Cantor set $Dsubset [0,1]$ with ${0,1}subset D$, we obtain conditions equivalent to the conjunction $f
We consider inductive limits of weighted spaces of holomorphic functions in the unit ball of $mathbb C^n$. The relationship between sets of uniqueness, weakly sufficient sets and sampling sets in these spaces is studied. In particular, the equivalenc
The Cholesky factorization of the moment matrix is applied to discrete orthogonal polynomials on the homogeneous lattice. In particular, semiclassical discrete orthogonal polynomials, which are built in terms of a discrete Pearson equation, are studi