ترغب بنشر مسار تعليمي؟ اضغط هنا

Spatial distribution of FIR rotationally excited CH+ and OH emission lines in the Orion Bar PDR

101   0   0.0 ( 0 )
 نشر من قبل Anna Parikka
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The abundance of CH+ and OH and excitation are predicted to be enhanced by the presence of vibrationally excited H2 or hot gas (~500-1000 K) in PDRs with high incident FUV radiation field. The excitation may also originate in dense gas (>10^5 cm-3) followed by nonreactive collisions. Previous observations suggest that the CH+ and OH correlate with dense and warm gas, and formation pumping contributes to CH+ excitation. We examine the spatial distribution of the CH+ and OH emission in the Orion Bar to establish their physical origin and main formation and excitation mechanisms. We present spatially sampled maps of the CH+ J=3-2 transition at 119.8 {mu}m and the OH {Lambda}-doublet at 84 {mu}m in the Orion Bar over an area of 110x110 with Herschel (PACS). We compare the spatial distribution of these molecules with those of their chemical precursors, C+, O and H2, and tracers of warm and dense gas. We assess the spatial variation of CH+ J=2-1 velocity-resolved line profile observed with Herschel (HIFI). The OH and CH+ lines correlate well with the high-J CO emission and delineate the warm and dense molecular region. While similar, the differences in the CH+ and OH morphologies indicate that CH+ formation and excitation are related to the observed vibrationally excited H2. This indicates that formation pumping contributes to the excitation of CH+. Interestingly, the peak of the rotationally excited OH 84 {mu}m emission coincides with a bright young object, proplyd 244-440, which shows that OH can be an excellent tracer of UV-irradiated dense gas. The spatial distribution of CH+ and OH revealed in our maps is consistent with previous modeling studies. Both formation pumping and nonreactive collisions in a UV-irradiated dense gas are important CH+ J=3-2 excitation processes. The excitation of the OH {Lambda}-doublet at 84 {mu}m is mainly sensitive to the temperature and density.

قيم البحث

اقرأ أيضاً

As part of a far-infrared (FIR) spectral scan with Herschel/PACS, we present the first detection of the hydroxyl radical (OH) towards the Orion Bar photodissociation region (PDR). Five OH rotational Lambda-doublets involving energy levels out to E_u/ k~511 K have been detected (at ~65, ~79, ~84, ~119 and ~163um). The total intensity of the OH lines is I(OH)~5x10^-4 erg s^-1 cm^-2 sr^-1. The observed emission of rotationally excited OH lines is extended and correlates well with the high-J CO and CH^+ J=3-2 line emission (but apparently not with water vapour), pointing towards a common origin. Nonlocal, non-LTE radiative transfer models including excitation by the ambient FIR radiation field suggest that OH arises in a small filling factor component of warm (Tk~160-220 K) and dense (n_H~10^{6-7} cm^-3) gas with source-averaged OH column densities of ~10^15 cm^-2. High density and temperature photochemical models predict such enhanced OH columns at low depths (A_V<1) and small spatial scales (~10^15 cm), where OH formation is driven by gas-phase endothermic reactions of atomic oxygen with molecular hydrogen. We interpret the extended OH emission as coming from unresolved structures exposed to far-ultraviolet (FUV) radiation near the Bar edge (photoevaporating clumps or filaments) and not from the lower density interclump medium. Photodissociation leads to OH/H2O abundance ratios (>1) much higher than those expected in equally warm regions without enhanced FUV radiation fields.
We study the spatial distribution and chemistry of small hydrocarbons in the Orion Bar PDR. We used the IRAM-30m telescope to carry out a millimetre line survey towards the Orion Bar edge, complemented with ~2x2 maps of the C2H and c-C3H2 emission. W e analyse the excitation of the detected hydrocarbons and constrain the physical conditions of the emitting regions with non-LTE radiative transfer models. We compare the inferred column densities with updated gas-phase photochemical models including 13CCH and C13CH isotopomer fractionation. ~40% of the lines in the survey arise from hydrocarbons (C2H, C4H, c-C3H2, c-C3H, C13CH, 13CCH, l-C3H and l-H2C3). We detect new lines from l-C3H+ and improve its rotational spectroscopic constants. Anions or deuterated hydrocarbons are not detected: [C2D]/[C2H]<0.2%, [C2H-]/[C2H]<0.007% and [C4H-]/[C4H]<0.05%. Our gas-phase models can reasonably match the observed column densities of most hydrocarbons (within factors <3). Since the observed spatial distribution of the C2H and c-C3H2 emission is similar but does not follow the PAH emission, we conclude that, in high UV-flux PDRs, photodestruction of PAHs is not a necessary requirement to explain the observed abundances of the smallest hydrocarbons. Instead, gas-phase endothermic reactions (or with barriers) between C+, radicals and H2 enhance the formation of simple hydrocarbons. Observations and models suggest that the [C2H]/[c-C3H2] ratio (~32 at the PDR edge) decreases with the UV field attenuation. The observed low cyclic-to-linear C3H column density ratio (<3) is consistent with a high electron abundance (Xe) PDR environment. In fact, the poorly constrained Xe gradient influences much of the hydrocarbon chemistry in the more UV-shielded gas. We propose that reactions of C2H isotopologues with 13C+ and H atoms can explain the observed [C13CH]/[13CCH]=1.4(0.1) fractionation level.
A significant fraction of the molecular gas in star-forming regions is irradiated by stellar UV photons. In these environments, the electron density (n_e) plays a critical role in the gas dynamics, chemistry, and collisional excitation of certain mol ecules. We determine n_e in the prototypical strongly irradiated photodissociation region (PDR), the Orion Bar, from the detection of new millimeter-wave carbon recombination lines (mmCRLs) and existing far-IR [13CII] hyperfine line observations. We detect 12 mmCRLs (including alpha, beta, and gamma transitions) observed with the IRAM 30m telescope, at ~25 angular resolution, toward the H/H2 dissociation front (DF) of the Bar. We also present a mmCRL emission cut across the PDR. These lines trace the C+/C/CO gas transition layer. As the much lower frequency carbon radio recombination lines, mmCRLs arise from neutral PDR gas and not from ionized gas in the adjacent HII region. This is readily seen from their narrow line profiles (dv=2.6+/-0.4 km/s) and line peak LSR velocities (v_LSR=+10.7+/-0.2 km/s). Optically thin [13CII] hyperfine lines and molecular lines - emitted close to the DF by trace species such as reactive ions CO+ and HOC+ - show the same line profiles. We use non-LTE excitation models of [13CII] and mmCRLs and derive n_e = 60-100 cm^-3 and T_e = 500-600 K toward the DF. The inferred electron densities are high, up to an order of magnitude higher than previously thought. They provide a lower limit to the gas thermal pressure at the PDR edge without using molecular tracers. We obtain P_th > (2-4)x10^8 cm^-3 K assuming that the electron abundance is equal or lower than the gas-phase elemental abundance of carbon. Such elevated thermal pressures leave little room for magnetic pressure support and agree with a scenario in which the PDR photoevaporates.
High levels of deuterium fractionation in gas-phase molecules are usually associated with cold regions, such as prestellar cores. Significant fractionation ratios are also observed in hot environments such as hot cores or hot corinos, where they are believed to be produced by the evaporation of the icy mantles surrounding dust grains, and thus are remnants of a previous cold (either gas-phase or grain surface) chemistry. The recent detection of DCN towards the Orion Bar, in a clump at a characteristic temperature of 70K, has shown that high deuterium fractionation can also be detected in PDRs. The Orion Bar clumps thus appear as a good environment for the observational study of deuterium fractionation in luke-warm gas, allowing to validate chemistry models in a different temperature range, where dominating fractionation processes are predicted to be different than in cold gas (< 20K). We aimed at studying observationally in detail the chemistry at work in the Orion Bar PDR, to understand if DCN is produced by ice mantle evaporation, or is the result of warm gas-phase chemistry, involving the CH2D+ precursor ion (which survives higher temperatures than the usual H2D+ precursor). Using the APEX and the IRAM 30m telescopes, we targetted selected deuterated species towards two clumps in the Orion Bar. We confirmed the detection of DCN and detected two new deuterated molecules (DCO+ and HDCO) towards one clump in the Orion Bar PDR. Significant deuterium fractionations are found for HCN and H2CO, but a low fractionation in HCO+. We also give upper limits for other molecules relevant for the deuterium chemistry. (...) We show evidence that warm deuterium chemistry driven by CH2D+ is at work in the clumps.
We present ~2x2 spectral-maps of Orion BN/KL outflows taken with Herschel at ~12 resolution. For the first time in the far-IR domain, we spatially resolve the emission associated with the bright H2 shocked regions Peak 1 and Peak 2 from that of the H ot Core and ambient cloud. We analyze the ~54-310um spectra taken with the PACS and SPIRE spectrometers. More than 100 lines are detected, most of them rotationally excited lines of 12CO (up to J=48-47), H2O, OH, 13CO, and HCN. Peaks 1/2 are characterized by a very high L(CO)/L(FIR)~5x10^{-3} ratio and a plethora of far-IR H2O emission lines. The high-J CO and OH lines are a factor ~2 brighter toward Peak 1 whereas several excited H2O lines are ~50% brighter toward Peak 2. A simplified non-LTE model allowed us to constrain the dominant gas temperature components. Most of the CO column density arises from Tk~200-500 K gas that we associate with low-velocity shocks that fail to sputter grain ice mantles and show a maximum gas-phase H2O/CO~10^{-2} abundance ratio. In addition, the very excited CO (J>35) and H2O lines reveal a hotter gas component (Tk~2500 K) from faster (v_S>25 km/s) shocks that are able to sputter the frozen-out H2O and lead to high H2O/CO>~1 abundance ratios. The H2O and OH luminosities cannot be reproduced by shock models that assume high (undepleted) abundances of atomic oxygen in the preshock gas and/or neglect the presence of UV radiation in the postshock gas. Although massive outflows are a common feature in other massive star-forming cores, Orion BN/KL seems more peculiar because of its higher molecular luminosities and strong outflows caused by a recent explosive event.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا