ترغب بنشر مسار تعليمي؟ اضغط هنا

Gaia Data Release 1: Astrometry - one billion positions, two million proper motions and parallaxes

114   0   0.0 ( 0 )
 نشر من قبل Lennart Lindegren
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Gaia Data Release 1 (Gaia DR1) contains astrometric results for more than 1 billion stars brighter than magnitude 20.7 based on observations collected by the Gaia satellite during the first 14 months of its operational phase. We give a brief overview of the astrometric content of the data release and of the model assumptions, data processing, and validation of the results. For stars in common with the Hipparcos and Tycho-2 catalogues, complete astrometric single-star solutions are obtained by incorporating positional information from the earlier catalogues. For other stars only their positions are obtained by neglecting their proper motions and parallaxes. The results are validated by an analysis of the residuals, through special validation runs, and by comparison with external data. Results. For about two million of the brighter stars (down to magnitude ~11.5) we obtain positions, parallaxes, and proper motions to Hipparcos-type precision or better. For these stars, systematic errors depending e.g. on position and colour are at a level of 0.3 milliarcsecond (mas). For the remaining stars we obtain positions at epoch J2015.0 accurate to ~10 mas. Positions and proper motions are given in a reference frame that is aligned with the International Celestial Reference Frame (ICRF) to better than 0.1 mas at epoch J2015.0, and non-rotating with respect to ICRF to within 0.03 mas/yr. The Hipparcos reference frame is found to rotate with respect to the Gaia DR1 frame at a rate of 0.24 mas/yr. Based on less than a quarter of the nominal mission length and on very provisional and incomplete calibrations, the quality and completeness of the astrometric data in Gaia DR1 are far from what is expected for the final mission products. The results nevertheless represent a huge improvement in the available fundamental stellar data and practical definition of the optical reference frame.



قيم البحث

اقرأ أيضاً

CONTEXT.The first Gaia Data Release (DR1) significantly improved the previously available proper motions for the majority of the Tycho-2 stars. AIMS. We want to detect runaway stars using Gaia DR1 proper motions and compare our results with previous searches. METHODS. Runaway O stars and BA supergiants are detected using a 2-D proper-motion method. The sample is selected using Simbad, spectra from our GOSSS project, literature spectral types, and photometry processed using CHORIZOS. RESULTS. We detect 76 runaway stars, 17 (possibly 19) of them with no prior identification as such, with an estimated detection rate of approximately one half of the real runaway fraction. An age effect appears to be present, with objects of spectral subtype B1 and later having travelled for longer distances than runaways of earlier subtypes. We also tentatively propose that the fraction of runaways is lower among BA supergiants that among O stars but further studies using future Gaia data releases are needed to confirm this. The frequency of fast rotators is high among runaway O stars, which indicates that a significant fraction of them (and possibly a majority) is produced in supernova explosions.
We infer distances and their asymmetric uncertainties for two million stars using the parallaxes published in the Gaia DR1 (GDR1) catalogue. We do this with two distance priors: A minimalist, isotropic prior assuming an exponentially decreasing space density with increasing distance, and an anisotropic prior derived from the observability of stars in a Milky Way model. We validate our results by comparing our distance estimates for 105 Cepheids which have more precise, independently estimated distances. For this sample we find that the Milky Way prior performs better (the RMS of the scaled residuals is 0.40) than the exponentially decreasing space density prior (RMS is 0.57), although for distances beyond 2 kpc the Milky Way prior performs worse, with a bias in the scaled residuals of -0.36 (vs. -0.07 for the exponentially decreasing space density prior). We do not attempt to include the photometric data in GDR1 due to the lack of reliable colour information. Our distance catalogue is available at http://www.mpia.de/homes/calj/tgas distances/main.html as well as at CDS. This should only be used to give individual distances. Combining data or testing models should be done with the original parallaxes, and attention paid to correlated and systematic uncertainties.
For the vast majority of stars in the second Gaia data release, reliable distances cannot be obtained by inverting the parallax. A correct inference procedure must instead be used to account for the nonlinearity of the transformation and the asymmetr y of the resulting probability distribution. Here we infer distances to essentially all 1.33 billion stars with parallaxes published in the second gaia data release. This is done using a weak distance prior that varies smoothly as a function of Galactic longitude and latitude according to a Galaxy model. The irreducible uncertainty in the distance estimate is characterized by the lower and upper bounds of an asymmetric confidence interval. Although more precise distances can be estimated for a subset of the stars using additional data (such as photometry), our goal is to provide purely geometric distance estimates, independent of assumptions about the physical properties of, or interstellar extinction towards, individual stars. We analyse the characteristics of the catalogue and validate it using clusters. The catalogue can be queried on the Gaia archive using ADQL at http://gea.esac.esa.int/archive/ and downloaded from http://www.mpia.de/~calj/gdr2_distances.html .
We present a pilot study of Galactic globular cluster (GC) proper motion (PM) determinations using Gaia data. We search for GC stars in the Tycho-Gaia Astrometric Solution (TGAS) catalogue from Gaia Data Release 1 (DR1), and identify five members of NGC104 (47 Tucanae), one member of NGC5272 (M3), five members of NGC6121 (M4), seven members of NGC6397, and two members of NGC6656 (M22). By taking a weighted average of member stars, fully accounting for the correlations between parameters, we estimate the parallax (and, hence, distance) and PM of the GCs. This provides a homogeneous PM study of multiple GCs based on an astrometric catalog with small and well-controlled systematic errors, and yields random PM errors similar to existing measurements. Detailed comparison to the available Hubble Space Telescope (HST) measurements generally shows excellent agreement, validating the astrometric quality of both TGAS and HST. By contrast, comparison to ground-based measurements shows that some of those must have systematic errors exceeding the random errors. Our parallax estimates have uncertainties an order of magnitude larger than previous studies, but nevertheless imply distances consistent with previous estimates. By combining our PM measurements with literature positions, distances, and radial velocities, we measure Galactocentric space motions for the clusters and find that these also agree well with previous analyses. Our analysis provides a framework for determining more accurate distances and PMs of Galactic GCs using future Gaia data releases. This will provide crucial constraints on the near end of the cosmic distance ladder and provide accurate GC orbital histories.
Parallaxes for 331 classical Cepheids, 31 Type II Cepheids and 364 RR Lyrae stars in common between Gaia and the Hipparcos and Tycho-2 catalogues are published in Gaia Data Release 1 (DR1) as part of the Tycho-Gaia Astrometric Solution (TGAS). In ord er to test these first parallax measurements of the primary standard candles of the cosmological distance ladder, that involve astrometry collected by Gaia during the initial 14 months of science operation, we compared them with literature estimates and derived new period-luminosity ($PL$), period-Wesenheit ($PW$) relations for classical and Type II Cepheids and infrared $PL$, $PL$-metallicity ($PLZ$) and optical luminosity-metallicity ($M_V$-[Fe/H]) relations for the RR Lyrae stars, with zero points based on TGAS. The new relations were computed using multi-band ($V,I,J,K_{mathrm{s}},W_{1}$) photometry and spectroscopic metal abundances available in the literature, and applying three alternative approaches: (i) by linear least squares fitting the absolute magnitudes inferred from direct transformation of the TGAS parallaxes, (ii) by adopting astrometric-based luminosities, and (iii) using a Bayesian fitting approach. TGAS parallaxes bring a significant added value to the previous Hipparcos estimates. The relations presented in this paper represent first Gaia-calibrated relations and form a work-in-progress milestone report in the wait for Gaia-only parallaxes of which a first solution will become available with Gaias Data Release 2 (DR2) in 2018.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا