ﻻ يوجد ملخص باللغة العربية
Cluster concepts have been extremely useful in elucidating many problems in physics. Percolation theory provides a generic framework to study the behavior of the cluster distribution. In most cases the theory predicts a geometrical transition at the percolation threshold, characterized in the percolative phase by the presence of a spanning cluster, which becomes infinite in the thermodynamic limit. Standard percolation usually deals with the problem when the constitutive elements of the clusters are randomly distributed. However correlations cannot always be neglected. In this case correlated percolation is the appropriate theory to study such systems. The origin of correlated percolation could be dated back to 1937 when Mayer [1] proposed a theory to describe the condensation from a gas to a liquid in terms of mathematical clusters (for a review of cluster theory in simple fluids see [2]). The location for the divergence of the size of these clusters was interpreted as the condensation transition from a gas to a liquid. One of the major drawback of the theory was that the cluster number for some values of thermodynamic parameters could become negative. As a consequence the clusters did not have any physical interpretation [3]. This theory was followed by Frenkels phenomenological model [4], in which the fluid was considered as made of non interacting physical clusters with a given free energy. This model was later improved by Fisher [3], who proposed a different free energy for the clusters, now called droplets, and consequently a different scaling form for the droplet size distribution. This distribution, which depends on two geometrical parameters, has the nice feature that the mean droplet size exhibits a divergence at the liquid-gas critical point.
We reconsider the problem of percolation on an equilibrium random network with degree-degree correlations between nearest-neighboring vertices focusing on critical singularities at a percolation threshold. We obtain criteria for degree-degree correla
We introduce a correlated static model and investigate a percolation transition. The model is a modification of the static model and is characterized by assortative degree-degree correlation. As one varies the edge density, the network undergoes a pe
We present results of numerical and experimental investigation of the electric breakage of a cellular material in pulsed electric fields (PEF). The numerical model simulates the conductive properties of a cellular material by a two-dimensional array
A model named `Colored Percolation has been introduced with its infinite number
The recent proliferation of correlated percolation models---models where the addition of edges/vertices is no longer independent of other edges/vertices---has been motivated by the quest to find discontinuous percolation transitions. The leader in th