ترغب بنشر مسار تعليمي؟ اضغط هنا

Practical Statistics for Particle Physicists

77   0   0.0 ( 0 )
 نشر من قبل Luca Lista
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Luca Lista




اسأل ChatGPT حول البحث

These three lectures provide an introduction to the main concepts of statistical data analysis useful for precision measurements and searches for new signals in High Energy Physics. The frequentist and Bayesian approaches to probability theory are introduced and, for both approaches, inference methods are presented. Hypothesis tests will be discussed, then significance and upper limit evaluation will be presented with an overview of the modern and most advanced techniques adopted for data analysis at the Large Hadron Collider.



قيم البحث

اقرأ أيضاً

61 - Andrei Gaponenko 2019
Unfolding is a well-established tool in particle physics. However, a naive application of the standard regularization techniques to unfold the momentum spectrum of protons ejected in the process of negative muon nuclear capture led to a result exhibi ting unphysical artifacts. A finite data sample limited the range in which unfolding can be performed, thus introducing a cutoff. A sharply falling true distribution led to low data statistics near the cutoff, which exacerbated the regularization bias and produced an unphysical spike in the resulting spectrum. An improved approach has been developed to address these issues and is illustrated using a toy model. The approach uses full Poisson likelihood of data, and produces a continuous, physically plausible, unfolded distribution. The new technique has a broad applicability since spectra with similar features, such as sharply falling spectra, are common.
New heterogeneous computing paradigms on dedicated hardware with increased parallelization, such as Field Programmable Gate Arrays (FPGAs), offer exciting solutions with large potential gains. The growing applications of machine learning algorithms i n particle physics for simulation, reconstruction, and analysis are naturally deployed on such platforms. We demonstrate that the acceleration of machine learning inference as a web service represents a heterogeneous computing solution for particle physics experiments that potentially requires minimal modification to the current computing model. As examples, we retrain the ResNet-50 convolutional neural network to demonstrate state-of-the-art performance for top quark jet tagging at the LHC and apply a ResNet-50 model with transfer learning for neutrino event classification. Using Project Brainwave by Microsoft to accelerate the ResNet-50 image classification model, we achieve average inference times of 60 (10) milliseconds with our experimental physics software framework using Brainwave as a cloud (edge or on-premises) service, representing an improvement by a factor of approximately 30 (175) in model inference latency over traditional CPU inference in current experimental hardware. A single FPGA service accessed by many CPUs achieves a throughput of 600--700 inferences per second using an image batch of one, comparable to large batch-size GPU throughput and significantly better than small batch-size GPU throughput. Deployed as an edge or cloud service for the particle physics computing model, coprocessor accelerators can have a higher duty cycle and are potentially much more cost-effective.
79 - Xuefeng Ding 2018
texttt{GooStats} is a software framework that provides a flexible environment and common tools to implement multi-variate statistical analysis. The framework is built upon the texttt{CERN ROOT}, texttt{MINUIT} and texttt{GooFit} packages. Running a m ulti-variate analysis in parallel on graphics processing units yields a huge boost in performance and opens new possibilities. The design and benchmark of texttt{GooStats} are presented in this article along with illustration of its application to statistical problems.
Muons are the most abundant charged particles arriving at sea level originating from the decay of secondary charged pions and kaons. These secondary particles are created when high-energy cosmic rays hit the atmosphere interacting with air nuclei ini tiating cascades of secondary particles which led to the formation of extensive air showers (EAS). They carry essential information about the extra-terrestrial events and are characterized by large flux and varying angular distribution. To account for open questions and the origin of cosmic rays, one needs to study various components of cosmic rays with energy and arriving direction. Because of the close relation between muon and neutrino production, it is the most important particle to keep track of. We propose a novel tracking algorithm based on the Geometric Deep Learning approach using graphical structure to incorporate domain knowledge to track cosmic ray muons in our 3-D scintillator detector. The detector is modeled using the GEANT4 simulation package and EAS is simulated using CORSIKA (COsmic Ray SImulations for KAscade) with a focus on muons originating from EAS. We shed some light on the performance, robustness towards noise and double hits, limitations, and application of the proposed algorithm in tracking applications with the possibility to generalize to other detectors for astrophysical and collider experiments.
98 - Dimitri Bourilkov 2019
The many ways in which machine and deep learning are transforming the analysis and simulation of data in particle physics are reviewed. The main methods based on boosted decision trees and various types of neural networks are introduced, and cutting- edge applications in the experimental and theoretical/phenomenological domains are highlighted. After describing the challenges in the application of these novel analysis techniques, the review concludes by discussing the interactions between physics and machine learning as a two-way street enriching both disciplines and helping to meet the present and future challenges of data-intensive science at the energy and intensity frontiers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا