ترغب بنشر مسار تعليمي؟ اضغط هنا

Dichotomy of the transport coefficients of correlated electron liquids in SrTiO3

114   0   0.0 ( 0 )
 نشر من قبل Susanne Stemmer
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss the Seebeck coefficient and the Hall mobility of electrons confined in narrow SrTiO3 quantum wells as a function of the three-dimensional carrier density and temperature. The quantum wells contain a fixed sheet carrier density of ~ 7x10^14 cm^-2 and their thickness is varied. At high temperatures, both properties exhibit apparent Fermi liquid behavior. In particular, the Seebeck coefficient increases nearly linearly with temperature (T) when phonon drag contributions are minimized, while the mobility decreases proportional to T^2. Furthermore, the Seebeck coefficient scales inversely with the Fermi energy (decreasing quantum well thickness). In contrast, the transport scattering rate is independent of the Fermi energy, which is inconsistent with a Fermi liquid. At low temperatures, the Seebeck coefficient deviates from the linear temperature dependence for those electron liquids that exhibit a correlation-induced pseudogap, indicating a change in the energy dependence of the scattering rate. The implications for describing transport in strongly correlated materials are discussed.

قيم البحث

اقرأ أيضاً

We examine the carrier density dependence of the scattering rate in two- and three-dimensional electron liquids in SrTiO3 in the regime where it scales with T^n (T is the temperature and n <= 2) in the cases when it is varied by electrostatic control and chemical doping, respectively. It is shown that the scattering rate is independent of the carrier density. This is contrary to the expectations from Landau Fermi liquid theory, where the scattering rate scales inversely with the Fermi energy (E_F). We discuss that the behavior is very similar to systems traditionally identified as non-Fermi liquids (n < 2). This includes the cuprates and other transition metal oxide perovskites, where strikingly similar density-independent scattering rates have been observed. The results indicate that the applicability of Fermi liquid theory should be questioned for a much broader range of correlated materials and point to the need for a unified theory.
We investigate correlation physics in high-density, two-dimensional electron liquids that reside in narrow SrTiO3 quantum wells. The quantum wells are remotely doped via an interfacial polar discontinuity and the three-dimensional (3D) carrier densit y is modulated by changing the width of the quantum well. It is shown that even at 3D densities well below one electron per site, short-range Coulomb interactions become apparent in transport, and an insulating state emerges at a critical density. We also discuss the role of disorder in the insulating state.
We report transport measurements, including: Hall, Seebeck and Nernst Effect. All these transport properties exhibit anomalous field and temperature dependences, with a change of behavior observed at about H 1.5T and T 15K. We were able to reconcile the low-temperature-low-field behavior of all transport properties using a simple two band analysis. A more detailed model is required in order to explain the high magnetic field regime.
Two-dimensional electron gases (2DEGs) in SrTiO$_3$ have become model systems for engineering emergent behaviour in complex transition metal oxides. Understanding the collective interactions that enable this, however, has thus far proved elusive. Her e we demonstrate that angle-resolved photoemission can directly image the quasiparticle dynamics of the $d$-electron subband ladder of this complex-oxide 2DEG. Combined with realistic tight-binding supercell calculations, we uncover how quantum confinement and inversion symmetry breaking collectively tune the delicate interplay of charge, spin, orbital, and lattice degrees of freedom in this system. We reveal how they lead to pronounced orbital ordering, mediate an orbitally-enhanced Rashba splitting with complex subband-dependent spin-orbital textures and markedly change the character of electron-phonon coupling, co-operatively shaping the low-energy electronic structure of the 2DEG. Our results allow for a unified understanding of spectroscopic and transport measurements across different classes of SrTiO$_3$-based 2DEGs, and yield new microscopic insights on their functional properties.
82 - D. Fuchs , K. Wolff , R. Schafer 2016
Two-dimensional electron systems found at the interface of SrTiO3-based oxide heterostructures often display anisotropic electric transport whose origin is currently under debate. To characterize transport along specific crystallographic directions, we developed a hard-mask patterning routine based on an amorphous CeO2 template layer. The technique allows preparing well-defined microbridges by conventional ultraviolet photolithography which, in comparison to standard techniques such as ion- or wet-chemical etching, does not induce any degradation of interfacial conductance. The patterning scheme is described in details and the successful production of microbridges based on amorphous Al2O3-SrTiO3 heterostructures is demonstrated. Significant anisotropic transport is observed for T < 30 K which is mainly related to impurity/defect scattering of charge carriers in these heterostructures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا