ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin coefficients and gauge fixing in the Newman-Penrose formalism

151   0   0.0 ( 0 )
 نشر من قبل Andrea Nerozzi
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Andrea Nerozzi




اسأل ChatGPT حول البحث

Since its introduction in 1962, the Newman-Penrose formalism has been widely used in analytical and numerical studies of Einsteins equations, like for example for the Teukolsky master equation, or as a powerful wave extraction tool in numerical relativity. Despite the many applications, Einsteins equations in the Newman-Penrose formalism appear complicated and not easily applicable to general studies of spacetimes, mainly because physical and gauge degrees of freedom are mixed in a nontrivial way. In this paper we approach the whole formalism with the goal of expressing the spin coefficients as functions of tetrad invariants once a particular tetrad is chosen. We show that it is possible to do so, and give for the first time a general recipe for the task, as well as an indication of the quantities and identities that are required.



قيم البحث

اقرأ أيضاً

473 - T. Birkandan 2017
We present a Maple11+GRTensorII based symbolic calculator for instanton metrics using Newman-Penrose formalism. Gravitational instantons are exact solutions of Einsteins vacuum field equations with Euclidean signature. The Newman-Penrose formalism, w hich supplies a toolbox for studying the exact solutions of Einsteins field equations, was adopted to the instanton case and our code translates it for the computational use.
We extend previous work [arXiv:1908.09095] to the case of Maxwells equations with a source. Our work shows how to construct a retarded vector potential for the Maxwell field on the Kerr-Newman background in a radiation gauge. As in our previous work, the vector potential has a reconstructed term obtained from a Hertz potential solving Teukolskys equation with a source, and a correction term which is obtainable by a simple integration along outgoing principal null rays. The singularity structure of our vector potential is discussed in the case of a point particle source.
We make a critical review of the semiclassical interpretation of quantum cosmology and emphasise that it is not necessary to consider that a concept of time emerges only when the gravitational field is (semi)classical. We show that the usual results of the semiclassical interpretation, and its generalisation known as the Born-Oppenheimer approach to quantum cosmology, can be obtained by gauge fixing, both at the classical and quantum levels. By `gauge fixing we mean a particular choice of the time coordinate, which determines the arbitrary Lagrange multiplier that appears in Hamiltons equations. In the quantum theory, we adopt a tentative definition of the (Klein-Gordon) inner product, which is positive definite for solutions of the quantum constraint equation found via an iterative procedure that corresponds to a weak coupling expansion in powers of the inverse Planck mass. We conclude that the wave function should be interpreted as a state vector for both gravitational and matter degrees of freedom, the dynamics of which is unitary with respect to the chosen inner product and time variable.
We consider the problem of covariant gauge-fixing in the most general setting of the field-antifield formalism, where the action W and the gauge-fixing part X enter symmetrically and both satisfy the Quantum Master Equation. Analogous to the gauge-ge nerating algebra of the action W, we analyze the possibility of having a reducible gauge-fixing algebra of X. We treat a reducible gauge-fixing algebra of the so-called first-stage in full detail and generalize to arbitrary stages. The associated square root measure contributions are worked out from first principles, with or without the presence of antisymplectic second-class constraints. Finally, we consider an W-X alternating multi-level generalization.
D = 2+1 gravity with a cosmological constant has been shown by Bonzom and Livine to present a Barbero-Immirzi like ambiguity depending on a parameter. We make use of this fact to show that, for positive cosmological constant, the Lorentzian theory ca n be partially gauge fixed and reduced to an SU(2) Chern-Simons theory. We then review the already known quantization of the latter in the framework of Loop Quantization for the case of space being topogically a cylinder. We finally construct, in the same setting, a quantum observable which, although non-trivial at the quantum level, corresponds to a null classical quantity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا