ﻻ يوجد ملخص باللغة العربية
Classical anisotropic XY antiferromagnets in a field on square and simple cubic lattices are studied using mainly Monte Carlo simulations. While in two dimensions the ordered antiferromagnetic and spin--flop phases are observed to be separated by a narrow disordered phase, a line of direct transitions of first order between the two phases and a bicritical point are found in three dimensions. Results are compared to previous findings.
We use numerical transfer-matrix methods, together with finite-size scaling and conformal invariance concepts, to discuss critical properties of two-dimensional honeycomb-lattice Ising spin-1/2 magnets, with couplings which are antiferromagnetic alon
We study systems of classical magnetic dipoles on simple cubic lattices with dipolar and antiferromagnetic exchange interactions. By analysis and Monte Carlo (MC) simulations, we find how the antiferromagnetic phases vary with uniaxial and fourfold a
We study classical and quantum Heisenberg antiferromagnets with exchange anisotropy of XXZ-type and crystal field single-ion terms of quadratic and cubic form in a field. The magnets display a variety of phases, including the spin-flop (or, in the qu
The correlation functions of certain $n$-cluster XY models are explicitly expressed in terms of those of the standard Ising chain in transverse field.
Conclusive evidence of order by disorder is scarce in real materials. Perhaps one of the strongest cases presented has been for the pyrochlore XY antiferromagnet Er2Ti2O7, with the ground state selection proceeding by order by disorder induced throug