ترغب بنشر مسار تعليمي؟ اضغط هنا

Determination of intrinsic ferroelectric polarization in lossy improper ferroelectric systems

159   0   0.0 ( 0 )
 نشر من قبل Dipten Bhattacharya
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We measured the intrinsic hysteretic polarization in lossy improper and nanoferroelectric systems where the nonhysteretic polarization and leakage are large and the relaxation takes place over a broader time scale. We used different measurement protocols such as standard single triangular voltage pulse, a pulse train of PUND (Positive Up Negative Down), and an even more complicated pulse train of fourteen voltage pulses and compared the results obtained. We show that a protocol which sends a train of fourteen pulses is more appropriate for extracting relaxed (i.e., time scale independent) and intrinsic remanent polarization for these samples. We also point out that it is possible to select and design an appropriate measurement protocol depending on the magnitude of polarization and leakage of the system.

قيم البحث

اقرأ أيضاً

Transition metal oxides hold great potential for the development of new device paradigms because of the field-tunable functionalities driven by their strong electronic correlations, combined with their earth abundance and environmental friendliness. Recently, the interfaces between transition-metal oxides have revealed striking phenomena such as insulator-metal transitions, magnetism, magnetoresistance, and superconductivity. Such oxide interfaces are usually produced by sophisticated layer-by-layer growth techniques, which can yield high quality, epitaxial interfaces with almost monolayer control of atomic positions. The resulting interfaces, however, are fixed in space by the arrangement of the atoms. Here we demonstrate a route to overcoming this geometric limitation. We show that the electrical conductance at the interfacial ferroelectric domain walls in hexagonal ErMnO3 is a continuous function of the domain wall orientation, with a range of an order of magnitude. We explain the observed behaviour using first-principles density functional and phenomenological theories, and relate it to the unexpected stability of head-to-head and tail-to-tail domain walls in ErMnO3 and related hexagonal manganites. Since the domain wall orientation in ferroelectrics is tunable using modest external electric fields, our finding opens a degree of freedom that is not accessible to spatially fixed interfaces.
Mobile charges and lattice polarization interact in ferroelectric materials because of the Coulomb interaction between the mobile free charges and the fixed lattice dipoles. We have investigated this mutual screening in KTiOPO4, a ferroelectric/super ionic single crystal in which the mobile charges are K+ ions. The ionic accumulation close to the crystal surfaces leads to orders of magnitude increase of the Second Harmonic Generation. This ionic space charge model is supported by the absence of such an effect in non-ionic conductor but ferroelectric BaTiO3, by its temperature dependence in KTiOPO4 and by its broad depletion at domain walls.
The successful theoretical prediction and experimental demonstration of hybrid improper ferroelectricity (HIF) provides a new pathway to couple octahedral rotations, ferroelectricity, and magnetism in complex materials. To enable technological applic ations, a HIF with a small coercive field is desirable. We successfully grow Sr3Sn2O7 single crystals, and discover that they exhibit the smallest electric coercive field at room temperature among all known HIFs. Furthermore, we demonstate that a small external stress can repeatedly erase and re-generate ferroelastic domains. In addition, using in-plane piezo-response force microscopy, we characterize abundant charged and neutral domain walls. The observed small electrical and mechanical coercive field values are in accordance with the results of our first-principles calculations on Sr3Sn2O7, which show low energy barriers for both 90{deg} and 180{deg} polarization switching compared to those in other experimentally demonstrated HIFs. Our findings represent an advance towards the possible technological implemetation of functional HIFs.
It is of great interest to design and make materials in which ferroelectric polarisation is coupled to other order parameters such as lattice, magnetic and electronic instabilities. Such materials will be invaluable in next-generation data storage de vices. Recently, remarkable progress has been made in understanding improper ferroelectric coupling mechanisms that arise from lattice and magnetic instabilities. However, although theoretically predicted, a compact lattice coupling between electronic and ferroelectric (polar) instabilities has yet to be realised. Here we report detailed crystallographic studies of a novel perovskite Hg$^{textbf{A}}$Mn$^{textbf{A}}_{3}$Mn$^{textbf{B}}_{4}$O$_{12}$ that is found to exhibit a polar ground state on account of such couplings that arise from charge and orbital ordering on both the A and B-sites, which are themselves driven by a highly unusual Mn$^{A}$-Mn$^B$ inter-site charge transfer. The inherent coupling of polar, charge, orbital and hence magnetic degrees of freedom, make this a system of great fundamental interest, and demonstrating ferroelectric switching in this and a host of recently reported hybrid improper ferroelectrics remains a substantial challenge.
Improper ferroelectrics are described by two order parameters: a primary one, driving a transition to long-range distortive, magnetic or otherwise non-electric order, and the electric polarization, which is induced by the primary order parameter as a secondary, complementary effect. Using low-temperature scanning probe microscopy, we show that improper ferroelectric domains in YMnO$_3$ can be locally switched by electric field poling. However, subsequent temperature changes restore the as-grown domain structure as determined by the primary lattice distortion. The backswitching is explained by uncompensated bound charges occuring at the newly written domain walls due to the lack of mobile screening charges at low temperature. Thus, the polarization of improper ferroelectrics is in many ways subject to the same electrostatics as in their proper counterparts, yet complemented by additional functionalities arising from the primary order parameter. Tailoring the complex interplay between primary order parameter, polarization, and electrostatics is therefore likely to result in novel functionalities specific to improper ferroelectrics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا