ﻻ يوجد ملخص باللغة العربية
Recently sparse representation has gained great success in face image super-resolution. The conventional sparsity-based methods enforce sparse coding on face image patches and the representation fidelity is measured by $ell_{2}$-norm. Such a sparse coding model regularizes all facial patches equally, which however ignores distinct natures of different facial patches for image reconstruction. In this paper, we propose a new weighted-patch super-resolution method based on AdaBoost. Specifically, in each iteration of the AdaBoost operation, each facial patch is weighted automatically according to the performance of the model on it, so as to highlight those patches that are more critical for improving the reconstruction power in next step. In this way, through the AdaBoost training procedure, we can focus more on the patches (face regions) with richer information. Various experimental results on standard face database show that our proposed method outperforms state-of-the-art methods in terms of both objective metrics and visual quality.
Face Super-Resolution (SR) is a subfield of the SR domain that specifically targets the reconstruction of face images. The main challenge of face SR is to restore essential facial features without distortion. We propose a novel face SR method that ge
Face super-resolution (FSR), also known as face hallucination, which is aimed at enhancing the resolution of low-resolution (LR) face images to generate high-resolution (HR) face images, is a domain-specific image super-resolution problem. Recently,
Recent learning-based super-resolution (SR) methods often focus on dictionary learning or network training. In this paper, we discuss in detail a new SR method based on local patch encoding (LPE) instead of traditional dictionary learning. The propos
In order to address the issue that medical image would suffer from severe blurring caused by the lack of high-frequency details in the process of image super-resolution reconstruction, a novel medical image super-resolution method based on dense neur
General image super-resolution techniques have difficulties in recovering detailed face structures when applying to low resolution face images. Recent deep learning based methods tailored for face images have achieved improved performance by jointly