ترغب بنشر مسار تعليمي؟ اضغط هنا

Growth and Characterization of Iron Scandium Sulfide (FeSc2S4)

61   0   0.0 ( 0 )
 نشر من قبل Jennifer Morey
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Here we report successful growth of mm scale single crystals of stoichiometric FeSc2S4. Single crystal X-ray diffraction yields a cubic structure, spacegroup Fd-3m, with a=10.5097(2) angstroms at T=110(2) K consistent with previous literature on polycrystallin samples. Models fit to the data reveal no detectable antisite mixing or deviations from the ideal stoichiometry. Heat capacity and dc magnetization measurements on the single crystals match those of high quality powder specimens. The novel traveling solvent growth method presented in this work opens the door to studies requiring sizable single crystals of the candidate spin-orbital liquid FeSc2S4.

قيم البحث

اقرأ أيضاً

We report an optimized chemical vapor transport method, which allows growing FeP single crystals up to 500 mg in mass and 80 $mm^{3}$ in volume. The high quality of the crystals obtained by this method was confirmed by means of EDX, high-resolution T EM, low-temperature single crystal XRD and neutron diffraction experiments. We investigated the transport and magnetic properties of the single crystals and calculated the electronic band structure of FeP. We show both theoretically and experimentally, that the ground state of FeP is metallic. The examination of the magnetic data reveals antiferromagnetic order below T$_{N}$ =119 K while transport remains metallic in both the paramagnetic and the antiferromagnetic phase. The analysis of the neutron diffraction data shows an incommensurate magnetic structure with the propagation vector Q=(0, 0, $pm{delta}$), where ${delta}$ $sim$ 0.2. For the full understanding of the magnetic state, further experiments are needed. The successful growth of large high-quality single crystals opens the opportunity for further investigations of itinerant magnets with incommensurate spin structures using a wide range of experimental tools.
RF plasma assisted MBE growth of Scandium Nitride (ScN) thin films on GaN (0001)/SiC, AlN (0001)/Al2O3 and on 6H-SiC (0001) hexagonal substrates is found to lead to a face centered cubic (rock-salt) crystal structure with (111) out-of-plane orientati on instead of hexagonal orientation. For the first time, cubic (111) twinned patterns in ScN are observed by in-situ electron diffraction during epitaxy, and the twin domains in ScN are detected by electron backscattered diffraction, and further corroborated with X-ray diffraction. The epitaxial ScN films display very smooth, sub nanometer surface roughness at a growth temperature of 750C. Temperature-dependent Hall-effect measurements indicate a constant high n-type carrier concentration of ~1x1020/cm3 and electron mobilities of ~ 20 cm2/Vs.
We have grown epitaxial thin films of multiferroic BiMnO$_3$ using pulsed laser deposition. The films were grown on SrTiO$_3$ (001) substrates by ablating a Bi-rich target. Using x-ray diffraction we confirmed that the films were epitaxial and the st oichiometry of the films was confirmed using Auger electron spectroscopy. The films have a ferromagnetic Curie temperature ($T_C$) of 85$pm$5 K and a saturation magnetization of 1 $mu_B$/Mn. The electric polarization as a function of electric field ($P-E$) was measured using an interdigital capacitance geometry. The $P-E$ plot shows a clear hysteresis that confirms the multiferroic nature of the thin films.
The growth and characterization of epitaxial Co3O4(111) films grown by oxygen plasma-assisted molecular beam epitaxy on single crystalline a-Al2O3(0001) is reported. The Co3O4(111) grows single crystalline with the epitaxial relation Co3O4(111)[-12-1 ]||a-Al2O3(0001)[10-10], as determined from in situ electron diffraction. Film stoichiometry is confirmed by x-ray photoelectron spectroscopy, while ex situ x-ray diffraction measurements show that the Co3O4 films are fully relaxed. Post-growth annealing induces significant modifications in the film morphology, including a sharper Co3O4/a-Al2O3 interface and improved surface crystallinity, as shown by x-ray reflectometry, atomic force microscopy and electron diffraction measurements. Despite being polar, the surface of both as-grown and annealed Co3O4(111) films are (1 * 1), which can be explained in terms of inversion in the surface spinel structure.
We studied the structural, magnetic and transport properties of LaAlO3/EuTiO3/SrTiO3 heterostructures grown by Pulsed Laser Deposition. The samples have been characterized in-situ by electron diffraction and scanning probe mi-croscopy and ex-situ by transport measurements and x-ray absorption spectroscopy. LaAlO3/EuTiO3/SrTiO3 films show a ferromagnetic transition at T<7.5 K, related to the ordering of Eu2+ spins, even in samples characterized by just two EuTiO3 unit cells. A finite metallic conductivity is observed only in the case of samples composed by one or two EuTiO3 unit cells and, simultaneously, by a LaAlO3 thickness equal or above 4 unit cells. The role of ferromagnetic EuTiO3 on the transport properties of delta-doped LaAlO3/EuTiO3/SrTiO3 is critically discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا