ترغب بنشر مسار تعليمي؟ اضغط هنا

Current-voltage characteristics and vortex dynamics in highly underdoped La$_{2-x}$Sr$_{x}$CuO$_{4}$

74   0   0.0 ( 0 )
 نشر من قبل Dragana Popovic
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The temperature dependence of the nonlinear current-voltage ($I$-$V$) characteristics in highly underdoped La$_{2-x}$Sr$_{x}$CuO$_{4}$ ($x=0.07$ and 0.08) thick films has been studied in both zero and perpendicular magnetic fields $H$. Power-law behavior of $V(I)$ is found for both $H=0$ and $H eq 0$. The critical current $I_{c}$ was extracted, and its temperature and magnetic field dependences were studied in detail. The Berezinskii-Kosterlitz-Thouless physics dominates the nonlinear $I$-$V$ near the superconducting transition at $H=0$, and it continues to contribute up to a characteristic temperature $T_x(H)$. Nonlinear $I$-$V$ persists up to an even higher temperature $T_{h}(H)$ due to the depinning of vortices.



قيم البحث

اقرأ أيضاً

63 - Zhenzhong Shi , Xiaoyan Shi , 2016
A low-frequency resistance noise study in highly underdoped thick films of La$_{2-x}$Sr$_{x}$CuO$_{4}$ ($x=0.07$ and 0.08) reveals slow, correlated dynamics and breaking of ergodicity near the superconducting transition of the Berezinskii-Kosterlitz- Thouless type. The observed correlated behavior is strongly suppressed by disorder.
In the underdoped pseudogap regime of cuprate superconductors, the normal state is commonly probed by applying a magnetic field ($H$). However, the nature of the $H$-induced resistive state has been the subject of a long-term debate, and clear eviden ce for a zero-temperature ($T=0$) $H$-tuned superconductor-insulator transition (SIT) has proved elusive. Here we report magnetoresistance measurements in underdoped La$_{2-x}$Sr$_{x}$CuO$_{4}$, providing striking evidence for quantum critical behavior of the resistivity -- the signature of a $H$-driven SIT. The transition is not direct: it is accompanied by the emergence of an intermediate state, which is a superconductor only at $T=0$. Our finding of a two-stage $H$-driven SIT goes beyond the conventional scenario in which a single quantum critical point separates the superconductor and the insulator in the presence of a perpendicular $H$. Similar two-stage $H$-driven SIT, in which both disorder and quantum phase fluctuations play an important role, may also be expected in other copper-oxide high-temperature superconductors.
119 - S.I. Vedeneev , D.K. Maude 2008
We have investigated the in-plane $I(V)$ characteristics and the Josephson vortex flow resistance in high-quality La-free Bi$_{2+x}$Sr$_{2-x}$CuO$_{6+delta}$ (Bi2201) single crystals in parallel and tilted magnetic fields at temperatures down to 40 m K. For parallel magnetic fields below the resistive upper critical field $H^{*}_{c2}$, the $I(V)$ characteristic obey a power-law with a smooth change with increasing magnetic-field of the exponent from above 5 down to 1. In contrast to the double-layer cuprate Bi2212, the observed smooth change suggests that there is no change in the mechanism of dissipation (no Kosterlitz-Thouless transition) over the range of temperatures investigated. At small angles between the applied field and the $ab$-plane, prominent current steps in the $I(V)$ characteristics and periodic oscillations of Josephson-vortex flow resistance are observed. While the current steps are periodic in the voltage at constant fields, the voltage position of the steps, together with the flux-flow voltage, increases nonlinearly with magnetic field. The $ab$-flow resistance oscillates as a function of field with a constant period over a wide range of magnetic fields and temperatures. The current steps in the $I(V)$ characteristics and the flow resistance oscillations can be linked to the motion of Josephson vortices across layers.
The in-plane optical conductivity of seven La(2-x)Sr(x)CuO(4) single crystals with x between 0 and 0.15 has been studied from 30 to 295 K. All doped samples exhibit strong peaks in the far-infrared, which closely resemble those observed in Cu-O ladde rs with one-dimensional charge-ordering. The behavior with doping and temperature of the peak energy, width, and intensity allows us to conclude that we are observing charge stripes dynamics in La(2-x)Sr(x)CuO(4) on the fast time scale of infrared spectroscopy.
We investigate the hole and lattice dynamics in a prototypical high temperature superconducting system La{2-x}Sr{x}CuO{4} using infrared spectroscopy. By exploring the anisotropy in the electronic response of CuO2 planes we show that our results supp ort the notion of stripes. Nevertheless, charge ordering effects are not apparent in the phonon spectra. All crystals show only the expected infrared active modes for orthorhombic phases without evidence for additional peaks that may be indicative of static charge ordering. Strong electron-phonon interaction manifests itself through the Fano lineshape of several phonon modes. This analysis reveals anisotropic electron-phonon coupling across the phase diagram, including superconducting crystals. Due to the ubiquity of the CuO2 plane, these results may have implications for other high Tc superconductors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا