ﻻ يوجد ملخص باللغة العربية
Trotter and Erdos found conditions for when a directed $m times n$ grid graph on a torus is Hamiltonian. We consider the analogous graphs on a two-holed torus, and study their Hamiltonicity. We find an $mathcal{O}(n^4)$ algorithm to determine the Hamiltonicity of one of these graphs and an $mathcal{O}(log(n))$ algorithm to find the number of diagonals, which are sets of vertices that force the directions of edges in any Hamiltonian cycle. We also show that there is a periodicity pattern in the graphs Hamiltonicities if one of the sides of the grid is fixed; and we completely classify which graphs are Hamiltonian in the cases where $n=m$, $n=2$, the $m times n$ graph has $1$ diagonal, or the $frac{m}{2} times frac{n}{2}$ graph has $1$ diagonal.
We provide a computer-assisted proof that if G is any finite group of order kp, where k < 48 and p is prime, then every connected Cayley graph on G is hamiltonian (unless kp = 2). As part of the proof, it is verified that every connected Cayley graph
We show that if G is a finite group whose commutator subgroup [G,G] has order 2p, where p is an odd prime, then every connected Cayley graph on G has a hamiltonian cycle.
If the face-cycles at all the vertices in a map on a surface are of same type then the map is called semi-equivelar. There are eleven types of Archimedean tilings on the plane. All the Archimedean tilings are semi-equivelar maps. If a map $X$ on the
People usually regard algorithms as more abstract than the programs that implement them. The natural way to formalize this idea is that algorithms are equivalence classes of programs with respect to a suitable equivalence relation. We argue that no such equivalence relation exists.
Suppose that D is an acyclic orientation of a graph G. An arc of D is called dependent if its reversal creates a directed cycle. Let m and M denote the minimum and the maximum of the number of dependent arcs over all acyclic orientations of G. We cal