ﻻ يوجد ملخص باللغة العربية
We study the mechanical stability of a tunable high-finesse microcavity under ambient conditions and investigate light-induced effects that can both suppress and excite mechanical fluctuations. As an enabling step, we demonstrate the ultra-precise electronic stabilization of a microcavity. We then show that photothermal mirror expansion can provide high-bandwidth feedback and improve cavity stability by almost two orders of magnitude. At high intracavity power, we observe self-oscillations of mechanical resonances of the cavity. We explain the observations by a dynamic photothermal instability, leading to parametric driving of mechanical motion. For an optimized combination of electronic and photothermal stabilization, we achieve a feedback bandwidth of $500,$kHz and a noise level of $1.1 times 10^{-13},$m rms.
Micron-scale optical cavities are produced using a combination of template sphere self-assembly and electrochemical growth. Transmission measurements of the tunable microcavities show sharp resonant modes with a Q-factor>300, and 25-fold local enhanc
Proximity of the metal nanoparticles enhance the plasmonic coupling and shifts the resonance. This article presents a numerical study of the photothermal effect in aggregates of small gold nanorods considering the ordered as well as random aggregates
Third-order nonlinear optical effects in photonic microcavities are studied. Significant light defocusing in the thin nonlinear microcavity spacer was observed. The polarization self-action effect was detected, when the large nonlinear polarization r
We report on measurements and modeling of the mode structure of tunable Fabry-Perot optical microcavities with imperfect mirrors. We find that non-spherical mirror shape and finite mirror size lead to loss, mode deformation, and shifted resonance fre
Scattering induced mode splitting in active microcavities is demonstrated. Below the lasing threshold, quality factor enhancement by optical gain allows resolving, in the wavelength-scanning transmission spectrum, the resonance dips of the split mode