ﻻ يوجد ملخص باللغة العربية
We present new high-resolution chemical-abundance analyses for the well-known high proper-motion subdwarfs G64-12 and G64-37, based on very high signal-to-noise spectra (S/N ~ 700/1) with resolving power R ~ 95,000. These high-quality data enable the first reliable determination of the carbon abundances for these two stars; we classify them as carbon-enhanced metal-poor (CEMP) stars based on their carbonicities, which both exceed [C/Fe] = +1.0. They are sub-classified as CEMP- no Group-II stars, based on their location in the Yoon-Beers diagram of absolute carbon abundance, A(C) vs. [Fe/H], as well as on the conventional diagnostic [Ba/Fe]. The relatively low absolute carbon abundances of CEMP-no stars, in combination with the high effective temperatures of these two stars (Teff ~ 6500 K) weakens their CH molecular features to the point that accurate carbon abundances can only be estimated from spectra with very high S/N. A comparison of the observed abundance patterns with the predicted yields from massive, metal-free supernova models reduces the inferred progenitor masses by factors of ~ 2-3, and explosion energies by factors of ~ 10-15, compared to those derived using previously claimed carbon abundance estimates. There are certainly many more warm CEMP-no stars near the halo main-sequence turnoff that have been overlooked in past studies, directly impacting the derived frequencies of CEMP-no stars as a function of metallicity, a probe that provides important constraints on Galactic chemical evolution models, the initial mass function in the early Universe, and first-star nucleosynthesis.
Mixing and fallback models in faint supernova models are supposed to reproduce the abundance patterns of observed carbon-enhanced metal-poor (CEMP) stars in the Galactic halo. A fine tuning of the model parameters for individual stars is required to
A substantial fraction of the lowest metallicity stars show very high enhancements in carbon. It is debated whether these enhancements reflect the stars birth composition, or if their atmospheres were subsequently polluted, most likely by accretion f
The HERMES spectrograph installed on the 1.2-m Mercator telescope has been used to monitor the radial velocity of 13 low-metallicity carbon stars, among which 7 Carbon-Enhanced Metal-Poor (CEMP) stars and 6 CH stars. All stars but one show clear evid
The carbon-enhanced metal-poor (CEMP) stars constitute approximately one fifth of the metal-poor ([Fe/H] ~< -2) population but their origin is not well understood. The most widely accepted formation scenario, invokes mass-transfer of carbon-rich mate
By considering the various CEMP subclasses separately, we try to derive, from the specific signatures imprinted on the abundances, parameters (such as metallicity, mass, temperature, and neutron source) characterizing AGB nucleosynthesis from the spe