ترغب بنشر مسار تعليمي؟ اضغط هنا

Imaging an 80 AU Radius Dust Ring Around the F5V Star HD 157587

68   0   0.0 ( 0 )
 نشر من قبل Maxwell A. Millar-Blanchaer
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present $H$-band near-infrared polarimetric imaging observations of the F5V star HD~157587 obtained with the Gemini Planet Imager (GPI) that reveal the debris disk as a bright ring structure at a separation of $sim$80$-$100~AU. The new GPI data complement recent HST/STIS observations that show the disk extending out to over 500~AU. The GPI image displays a strong asymmetry along the projected minor axis as well as a fainter asymmetry along the projected major axis. We associate the minor and major axis asymmetries with polarized forward scattering and a possible stellocentric offset, respectively. To constrain the disk geometry we fit two separate disk models to the polarized image, each using a different scattering phase function. Both models favor a disk inclination of $sim 70degr$ and a $1.5pm0.6$ AU stellar offset in the plane of the sky along the projected major axis of the disk. We find that the stellar offset in the disk plane, perpendicular to the projected major axis is degenerate with the form of the scattering phase function and remains poorly constrained. The disk is not recovered in total intensity due in part to strong adaptive optics residuals, but we recover three point sources. Considering the systems proximity to the galactic plane and the point sources positions relative to the disk, we consider it likely that they are background objects and unrelated to the disks offset from the star.

قيم البحث

اقرأ أيضاً

HST/NICMOS PSF-subtracted coronagraphic observations of HD 181327 have revealed the presence of a ring-like disk of circumstellar debris seen in 1.1 micron light scattered by the disk grains, surrounded by a di use outer region of lower surface brigh tness. The annular disk appears to be inclined by 31.7 +/- 1.6 deg from face on with the disk major axis PA at 107 +/-2 deg . The total 1.1 micron flux density of the light scattered by the disk (at 1.2 < r < 5.0) of 9.6 mJy +/- 0.8 mJy is 0.17% +/- 0.015% of the starlight. Seventy percent of the light from the scattering grains appears to be confined in a 36 AU wide annulus centered on the peak of the radial surface brightness (SB) profile 86.3 +/- 3.9 AU from the star, well beyond the characteristic radius of thermal emission estimated from IRAS and Spitzer flux densities assuming blackbody grains (~ 22 AU). The light scattered by the ring appears bilaterally symmetric, exhibits directionally preferential scattering well represented by a Henyey-Greenstein scattering phase function with g = 0.30 +/- 0.03, and has an azimuthally medianed SB at the 86.3 AU radius of peak SB of 1.00 +/- 0.07 mJy arcsec^-2. No photocentric offset is seen in the ring relative to the position of the central star. A low surface brightness diffuse halo is seen in the NICMOS image to a distance of ~ 4 Deeper 0.6 micron HST/ACS PSF-subtracted coronagraphic observations reveal a faint outer nebulosity, asymmetrically brighter to the North of the star. We discuss models of the disk and properties of its grains, from which we infer a maximum vertical scale height of 4 - 8 AU at the 87.6 AU radius of maximum surface density, and a total maximum dust mass of collisionally replenished grains with minimum grain sizes of ~ 1 micron of ~ 4 M(moon).
The Herbig Ae star HD 169142 is known to have a gaseous disk with a large inner hole, and also a photometrically variable inner dust component in the sub-au region. Following up our previous analysis, we further studied the temporal evolution of inne r dust around HD 169142, which may provide information on the evolution from late-stage protoplanetary disks to debris disks. We used near-infrared interferometric observations obtained with VLTI/PIONIER to constrain the dust distribution at three epochs spanning six years. We also studied the photometric variability of HD 169142 using our optical-infrared observations and archival data. Our results indicate that a dust ring at ~0.3 au formed at some time between 2013 and 2018, and then faded (but did not completely disappear) by 2019. The short-term variability resembles that observed in extreme debris disks, and is likely related to short-lived dust of secondary origin, though variable shadowing from the inner ring could be an alternative interpretation. If confirmed, this is the first direct detection of secondary dust production inside a protoplanetary disk.
Context: Large cavities in disks are important testing grounds for the mechanisms proposed to drive disk evolution and dispersion, such as dynamical clearing by planets and photo-evaporation. Aims: We aim to resolve the large cavity in the disk aroun d HD 34282, such as has been predicted by previous studies modeling the spectral energy distribution Methods: Using ALMA band 7 observations we study HD 34282 with a spatial resolution of 0.10arcsec x 0.17arcsec at 345 GHz. Results: We resolve the disk around HD 34282 into a ring between 0.24arcsec and 1.15arcsec (78 and 374 au adopting a distance of 325 pc). The emission in this ring shows azimuthal asymmetry centered at a radial distance of 0.46arcsec and a position angle of 135 degrees and an azimuthal FWHM of 51 degrees. We detect CO emission both inside the disk cavity and as far out as 2.7 times the radial extent of the dust emission. Conclusions: Both the large disk cavity and the azimuthal structure in the disk around HD 34282 can be explained by the presence of a 50 jupiter mass brown dwarf companion at a separation of ~ 0.1arcsec.
237 - Jun Hashimoto , Ruobing Dong , 2021
We present Atacama Large Millimeter/submillimeter Array (ALMA) gas and dust observations at band 7 (339~GHz: 0.89~mm) of the protoplanetary disk around a very low mass star ZZ~Tau~IRS with a spatial resolution of 0farcs25. The $^{12}$CO~$J=3rightarro w2$ position--velocity diagram suggests a dynamical mass of ZZ~Tau~IRS of $sim$0.1--0.3~$M_{sun}$. The disk has a total flux density of 273.9 mJy, corresponding to an estimated mass of 24--50~$M_oplus$ in dust. The dust emission map shows a ring at $r=$ 58~au and an azimuthal asymmetry at $r=$ jh{45}~au with a position angle of 135degr. The properties of the asymmetry, including radial width, aspect ratio, contrast, and contribution to the total flux, were found to be similar to the asymmetries around intermediate mass stars ($sim$2~$M_{sun}$) such as MWC~758 and IRS~48. This implies that the asymmetry in the ZZ~Tau~IRS disk shares a similar origin with others, despite the star being $sim$10 times less massive. Our observations also suggest that the inner and outer parts of the disk may be misaligned. Overall, the ZZ~Tau~IRS disk shows evidence of giant planet formation at $sim$10 au scale at a few Myr. If confirmed, it will challenge existing core accretion models, in which such planets have been predicted to be extremely hard to form around very low mass stars.
We present the first polarimetric detection of the inner disk component around the pre-main sequence B9.5 star HD 141569A. Gemini Planet Imager H-band (1.65 micron) polarimetric differential imaging reveals the highest signal-to-noise ratio detection of this ring yet attained and traces structure inwards to 0.25 (28 AU at a distance of 111 pc). The radial polarized intensity image shows the east side of the disk, peaking in intensity at 0.40 (44 AU) and extending out to 0.9 (100 AU). There is a spiral arm-like enhancement to the south, reminiscent of the known spiral structures on the outer rings of the disk. The location of the spiral arm is coincident with 12CO J=3-2 emission detected by ALMA, and hints at a dynamically active inner circumstellar region. Our observations also show a portion of the middle dusty ring at ~220 AU known from previous observations of this system. We fit the polarized H-band emission with a continuum radiative transfer Mie model. Our best-fit model favors an optically thin disk with a minimum dust grain size close to the blow-out size for this system: evidence of on-going dust production in the inner reaches of the disk. The thermal emission from this model accounts for virtually all of the far-infrared and millimeter flux from the entire HD 141569A disk, in agreement with the lack of ALMA continuum and CO emission beyond ~100 AU. A remaining 8-30 micron thermal excess a factor of ~2 above our model argues for a yet-unresolved warm innermost 5-15 AU component of the disk.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا