ﻻ يوجد ملخص باللغة العربية
We use the subleading soft-graviton theorem to construct an operator $T_{zz}$ whose insertion in the four-dimensional tree-level quantum gravity $mathcal{S}$-matrix obeys the Virasoro-Ward identities of the energy momentum tensor of a two-dimensional conformal field theory (CFT$_2$). The celestial sphere at Minkowskian null infinity plays the role of the Euclidean sphere of the CFT$_2$, with the Lorentz group acting as the unbroken $SL(2,mathbb{C})$ subgroup.
We consider the tree-level scattering of massless particles in $(d+2)$-dimensional asymptotically flat spacetimes. The $mathcal{S}$-matrix elements are recast as correlation functions of local operators living on a space-like cut $mathcal{M}_d$ of th
We investigate the stress tensor for holographic fluids at the finite cutoff surface through perturbing the Schwarzchild-AdS black brane background to the first order perturbations in the scenario of fluid/gravity correspondence. We investigate the m
We extend previous work on the numerical diagonalization of quantum stress tensor operators in the Minkowski vacuum state, which considered operators averaged in a finite time interval, to operators averaged in a finite spacetime region. Since real e
We investigate the neutral AdS black-hole solution in the consistent $Drightarrow4$ Einstein-Gauss-Bonnet gravity proposed in [K. Aoki, M.A. Gorji, and S. Mukohyama, Phys. Lett. B {bf 810}, 135843 (2020)] and construct the gravity duals of ($2+1$)-di
Recently a boundary energy-momentum tensor $T_{zz}$ has been constructed from the soft graviton operator for any 4D quantum theory of gravity in asymptotically flat space. Up to an anomaly which is one-loop exact, $T_{zz}$ generates a Virasoro action