ﻻ يوجد ملخص باللغة العربية
Our main point of focus is the set of closed geodesics on hyperbolic surfaces. For any fixed integer $k$, we are interested in the set of all closed geodesics with at least $k$ (but possibly more) self-intersections. Among these, we consider those of minimal length and investigate their self-intersection numbers. We prove that their intersection numbers are upper bounded by a universal linear function in $k$ (which holds for any hyperbolic surface). Moreover, in the presence of cusps, we get bounds which imply that the self-intersection numbers behave asymptotically like $k$ for growing $k$.
Froyshov invariants are numerical invariants of rational homology three-spheres derived from gradings in monopole Floer homology. In the past few years, they have been employed to solve a wide range of problems in three and four-dimensional topology.
Let $Q$ be a closed manifold admitting a locally-free action of a compact Lie group $G$. In this paper we study the properties of geodesic flows on $Q$ given by Riemannian metrics which are invariant by such an action. In particular, we will be inter
We prove a quantitative estimate, with a power saving error term, for the number of simple closed geodesics of length at most $L$ on a compact surface equipped with a Riemannian metric of negative curvature. The proof relies on the exponential mixing rate for the Teichm{u}ller geodesic flow.
We obtained a complete classification of simple closed geodesics on regular tetrahedra in Lobachevsky space. Also, we evaluated the number of simple closed geodesics of length not greater than $L$ and found the asymptotic of this number as $L$ goes to infinity.
The goal of the article is to provide different explicit quantifications of the non density of simple closed geodesics on hyperbolic surfaces. In particular, we show that within any embedded metric disk on a surface, lies a disk of radius only depend