ﻻ يوجد ملخص باللغة العربية
The mean-field solutions of electronic excited states are much less accessible than ground state (e.g. Hartree-Fock) solutions. Energy-based optimization methods for excited states, like $Delta$-scf, tend to fall into the lowest solution consistent with a given symmetry -- a problem known as variational collapse. In this work, we combine the ideas of direct energy-targeting and variance-based optimization in order to describe excited states at the mean-field level. The resulting method, $sigma$-scf, has several advantages. First, it allows one to target any desired excited state by specifying a single parameter: a guess of the energy of that state. It can therefore, in principle, find emph{all} excited states. Second, it avoids variational collapse by using a variance-based, unconstrained local minimization. As a consequence, all states -- ground or excited -- are treated on an equal footing. Third, it provides an alternate approach to locate $Delta$-scf solutions that are otherwise inaccessible by the usual non-aufbau configuration initial guess. We present results for this new method for small atoms (He, Be) and molecules (H2, HF).
We present a generalization of the variational principle that is compatible with any Hamiltonian eigenstate that can be specified uniquely by a list of properties. This variational principle appears to be compatible with a wide range of electronic st
The authors present a technique using variational Monte Carlo to solve for excited states of electronic systems. The technique is based on enforcing orthogonality to lower energy states, which results in a simple variational principle for the excited
This paper reports an implementation of Hartree-Fock linear response with complex orbitals for computing electronic spectra of molecules in a strong external magnetic fields. The implementation is completely general, allowing for spin-restricted, spi
The electronically excited states of methylene (CH$_2$), ethylene (C$_2$H$_4$), butadiene (C$_4$H$_6$), hexatriene (C$_6$H$_8$), and ozone (O$_3$) have long proven challenging due to their complex mixtures of static and dynamic correlations. Semistoc
We introduce natural transition geminals as a means to qualitatively understand a transition where double excitations are important. The first two $A_{1}$ singlet states of the CH cation are used as an initial example. We calculate these states with