ﻻ يوجد ملخص باللغة العربية
The singular value decomposition (SVD) of large-scale matrices is a key tool in data analytics and scientific computing. The rapid growth in the size of matrices further increases the need for developing efficient large-scale SVD algorithms. Randomized SVD based on one-time sketching has been studied, and its potential has been demonstrated for computing a low-rank SVD. Instead of exploring different single random sketching techniques, we propose a Monte Carlo type integrated SVD algorithm based on multiple random sketches. The proposed integration algorithm takes multiple random sketches and then integrates the results obtained from the multiple sketched subspaces. So that the integrated SVD can achieve higher accuracy and lower stochastic variations. The main component of the integration is an optimization problem with a matrix Stiefel manifold constraint. The optimization problem is solved using Kolmogorov-Nagumo-type averages. Our theoretical analyses show that the singular vectors can be induced by population averaging and ensure the consistencies between the computed and true subspaces and singular vectors. Statistical analysis further proves a strong Law of Large Numbers and gives a rate of convergence by the Central Limit Theorem. Preliminary numerical results suggest that the proposed integrated SVD algorithm is promising.
This paper introduces the functional tensor singular value decomposition (FTSVD), a novel dimension reduction framework for tensors with one functional mode and several tabular modes. The problem is motivated by high-order longitudinal data analysis.
The hierarchical SVD provides a quasi-best low rank approximation of high dimensional data in the hierarchical Tucker framework. Similar to the SVD for matrices, it provides a fundamental but expensive tool for tensor computations. In the present wor
Quaternion matrix approximation problems construct the approximated matrix via the quaternion singular value decomposition (SVD) by selecting some singular value decomposition (SVD) triplets of quaternion matrices. In applications such as color image
In this paper we propose an approach to approximate a truncated singular value decomposition of a large structured matrix. By first decomposing the matrix into a sum of Kronecker products, our approach can be used to approximate a large number of sin
This chapter describes gene expression analysis by Singular Value Decomposition (SVD), emphasizing initial characterization of the data. We describe SVD methods for visualization of gene expression data, representation of the data using a smaller num