ﻻ يوجد ملخص باللغة العربية
Historically, the weak s-process contribution to metal-poor stars is thought to be extremely small, due to the effect of the secondary-like nature of the neutron source 22Ne(a;n)25Mg in massive stars, which means that metal-poor weak s-process stars could not be found. ET0097 is the first observed carbon-enhanced metal-poor (CEMP) star in the Sculptor dwarf spheroidal galaxy. Because C is enriched and the elements heavier than Ba are not overabundant, ET0097 can be classified as a CEMP-no star. However, this star shows overabundances of lighter n-capture elements (i.e., Sr, Y and Zr). In this work, having adopted the abundance decomposition approach, we investigate the astrophysical origins of the elements in ET0097. We find that the light elements and iron-peak elements (from O to Zn) of the star mainly originate from the primary process of massive stars and the heavier n-capture elements (heavier than Ba) mainly come from the main r-process. However, the lighter n-capture elements such as Sr, Y and Zr should mainly come from the primary weak s-process. The contributed fractions of the primary weak s-process to the Sr, Y and Zr abundances of ET0097 are about 82%, 84% and 58% respectively, suggesting that the CEMP star ET0097 should have the footprints of the weak s-process. The derived result should be a significant evidence that the weak s-process elements can be produced in metal-poor massive stars.
The origin of carbon-enhanced metal-poor (CEMP) stars plays a key role in characterising the formation and evolution of the first stars and the Galaxy since the extremely-poor (EMP) stars with [Fe/H] leq -2.5 share the common features of carbon enhan
A significant fraction of all metal-poor stars are carbon-rich. Most of these carbon-enhanced metal-poor (CEMP) stars also show enhancement in elements produced mainly by the s-process (CEMP-s stars) and evidence suggests that the origin of these non
Carbon-enhanced metal-poor stars with s-process enrichment (CEMP-s) are believed to be the products of mass transfer from an AGB companion, which has long since become a white dwarf. The surface abundances of CEMP-s stars are thus commonly assumed to
A detailed high-resolution spectroscopic analysis is presented for the carbon-rich low metallicity Galactic halo object CS 22964-161. We have discovered that CS 22964-161 is a double-lined spectroscopic binary, and have derived accurate orbital compo
A substantial fraction of the lowest metallicity stars show very high enhancements in carbon. It is debated whether these enhancements reflect the stars birth composition, or if their atmospheres were subsequently polluted, most likely by accretion f