ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-Hermitian coupled-mode theory for incoherently pumped exciton-polariton condensates

52   0   0.0 ( 0 )
 نشر من قبل Saeed Khan
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The generalized Gross-Pitaevskii equation (gGPE) is an effective phenomenological description for the dynamics of incoherently pumped exciton-polariton condensates. However, a brute force numerical simulation of the gGPE provides little physical insight into condensate formation under arbitrary pumping configurations, and is demanding in terms of computational resources. We introduce in this paper a modal description of polariton condensation under incoherent pumping of arbitrary spatial profile, based on eigenmodes of the non-Hermitian generator of the linearized dynamics. A pump-dependent basis is then introduced to formulate a temporal coupled-mode theory that captures condensate dynamics in the presence of all nonlinear interactions. Simulations using a single set of modes for a given pumping and trapping configuration agree very well with a full integration of the gGPE in diverse dynamical regimes, supporting the validity of this modal description, while also providing a speedup in simulation times.



قيم البحث

اقرأ أيضاً

70 - Nadav Landau 2020
We observe for the first time two-photon excited condensation of exciton-polaritons. The angle-resolved photoluminescence (PL) from the Lower Polariton (LP) ground state in our planar GaAs-based microcavity structure exhibits a clear intensity thresh old as a function of increased two-photon excitation power, coinciding with an interaction-induced blueshift and a narrowing of spectral linewidth, characteristic of the transition from a thermal distribution of lower polaritons to polariton condensation. Two-Photon Absorption (TPA) is evidenced in the quadratic dependence of the input-output curves below and above the threshold region. Second Harmonic Generation (SHG) is ruled out by both this threshold behavior and by scanning the pump photon energy and observing a lack of dependence of the LP emission peak energy. Our results pave the way towards realization of a polariton-based stimulated THz radiation source, stemming from the dipole-allowed transition from the Quantum Well (QW) 2p dark exciton state to the 1s-exciton-based LP ground state, as theoretically predicted in [A. V. Kavokin et al., Phys. Rev. Lett. 108, 197401 (2012)].
We predict the existence of non-Hermitian topologically protected end states in a one-dimensional exciton-polariton condensate lattice, where topological transitions are driven by the laser pump pattern. We show that the number of end states can be d escribed by a Chern number and a topological invariant based on the Wilson loop. We find that such transitions arise due to {it enforced exceptional points} which can be predicted directly from the bulk Bloch wave functions. This allows us to establish a new type of bulk-boundary correspondence for non-Hermitian systems and to compute the phase diagram of an open chain analytically. Finally, we demonstrate topological lasing of a single end-mode in a realistic model of a microcavity lattice.
We examine the photoluminescence of highly-excited exciton-polariton condensates in semiconductor microcavities. Under strong pumping, exciton-polariton condensates have been observed to undergo a lasing transition where strong coupling between the e xcitons and photons is lost. We discuss an alternative high-density scenario, where the strong coupling is maintained. We find that the photoluminescence smoothly transitions between the lower polariton energy to the cavity photon energy. An intuitive understanding of the change in spectral characteristics is given, as well as differences to the photoluminescence characteristics of the lasing case.
Recently a new type of system exhibiting spontaneous coherence has emerged -- the exciton-polariton condensate. Exciton-polaritons (or polaritons for short) are bosonic quasiparticles that exist inside semiconductor microcavities, consisting of a sup erposition of an exciton and a cavity photon. Above a threshold density the polaritons macroscopically occupy the same quantum state, forming a condensate. The lifetime of the polaritons are typically comparable to or shorter than thermalization times, making them possess an inherently non-equilibrium nature. Nevertheless, they display many of the features that would be expected of equilibrium Bose-Einstein condensates (BECs). The non-equilibrium nature of the system raises fundamental questions of what it means for a system to be a BEC, and introduces new physics beyond that seen in other macroscopically coherent systems. In this review we focus upon several physical phenomena exhibited by exciton-polariton condensates. In particular we examine topics such as the difference between a polariton BEC, a polariton laser, and a photon laser, as well as physical phenomena such as superfluidity, vortex formation, BKT (Berezinskii-Kosterlitz-Thouless) and BCS (Bardeen-Cooper-Schrieffer) physics. We also discuss the physics and applications of engineered polariton structures.
We study nonlinear dynamics of exciton-polaritons in an incoherently pumped semiconductor microcavity with embedded weak-contrast lattice and coupled to an exciton reservoir. We elucidate fundamental features of non-equilibrium exciton-polariton cond ensate trapped in one-dimensional periodical potential close to zero momentum (so-called Zero-state) and to the state at the boundary of Brillouin zone ($pi$-state). Within the framework of the mean-field theory, we identify different regimes of both relaxation and oscillatory dynamics of coherent exciton-polaritons governed by superpositions of Bloch eigenstates within the periodic lattice. In particular, we theoretically demonstrate stable macroscopical oscillations, akin to nonlinear Josephson oscillations, between different spectral components of a polariton condensate in the momenta-space. We elucidate a strong influence of the dissipative effects and the feedback induced by the inhomogeneity of incoherent reservoir on the dynamics of the coherent polaritons.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا