ﻻ يوجد ملخص باللغة العربية
We consider the problem of locally describing tubular geometry around a submanifold embedded in a (pseudo)Riemannian manifold in its general form. Given the geometry of ambient space in an arbitrary coordinate system and equations determining the submanifold in the same system, we compute the tubular expansion coefficients in terms of this {it a priori data}. This is done by using an indirect method that crucially applies the tubular expansion theorem for vielbein previously derived. With an explicit construction involving the relevant coordinate and non-coordinate frames we verify consistency of the whole method up to quadratic order in vielbein expansion. Furthermore, we perform certain (long and tedious) higher order computation which verifies the first non-trivial spin connection term in the expansion for the first time. Earlier a similar method was used to compute tubular geometry in loop space. We explain this work in the light of our general construction.
Motivated by the computation of loop space quantum mechanics as indicated in [7], here we seek a better understanding of the tubular geometry of loop space ${cal L}{cal M}$ corresponding to a Riemannian manifold ${cal M}$ around the submanifold of va
We investigate general features of the evolution of holographic subregion complexity (HSC) on Vaidya-AdS metric with a general form. The spacetime is dual to a sudden quench process in quantum system and HSC is a measure of the ``difference between t
In the quest for the mathematical formulation of M-theory, we consider three major open problems: a first-principles construction of the single (abelian) M5-brane Lagrangian density, the origin of the gauge field in heterotic M-theory, and the supers
In our previous work arXiv:1704.08675, we pointed out that various multi-cut solutions exist in the Chern-Simons (CS) matrix models at large-$N$ due to a curious structure of the saddle point equations. In the ABJM matrix model, these multi-cut solut
We define lowest weight polynomials (LWPs), motivated by $so(d,2)$ representation theory, as elements of the polynomial ring over $ d times n $ variables obeying a system of first and second order partial differential equations. LWPs invariant under