ﻻ يوجد ملخص باللغة العربية
Light induced processes in nature occur by irradiation with slowly turned-on incoherent light. The general case of time-dependent incoherent excitation is solved here analytically for V-type systems using a newly developed master equation method. Clear evidence emerges for the disappearance of radiatively induced coherence as turn-on times of the radiation exceed characteristic system times. The latter is the case, in nature, for all relevant dynamical time scales for other than nearly degenerate energy levels. We estimate that, in the absence of non-radiative relaxation and decoherence, turn-on times slower than 1 ms (still short by natural standards) induce Fano coherences between energy eigenstates that are separated by less than 0.9 cm$^{-1}$.
We explore the properties of steady-state Fano coherences generated in a three-level V-system continuously pumped by polarized incoherent light in the absence of coherent driving. The ratio of the stationary coherences to excited-state populations $m
We present closed-form analytic solutions to non-secular Bloch-Redfield master equations for quantum dynamics of a V-type system driven by weak coupling to a thermal bath. We focus on noise-induced Fano coherences among the excited states induced by
The question of how quantum coherence facilitates energy transfer has been intensively debated in the scientific community. Since natural and artificial light-harvesting units operate under the stationary condition, we address this question via a non
Exciton formation leads to J-bands in solid pentacene. Describing these exciton bands represents a challenge for both time-dependent (TD) density-functional theory (DFT) and for its semiempirical analogue, namely for TD density-functional tight bindi
We study temporal variability of radiation driven winds using one dimensional, time dependent simulations and an extension of the classic theory of line driven winds developed by Castor Abbott and Klein. We drive the wind with a sinusoidally varying