ﻻ يوجد ملخص باللغة العربية
Line-of-sight integrals of the squared density, commonly called the J-factor, are essential for inferring dark matter annihilation signals. The J-factors of dark matter-dominated dwarf spheroidal satellite galaxies (dSphs) have typically been derived using Bayesian techniques, which for small data samples implies that a choice of priors constitutes a non-negligible systematic uncertainty. Here we report the development of a new fully frequentist approach to construct the profile likelihood of the J-factor. Using stellar kinematic data from several classical and ultra-faint dSphs, we derive the maximum likelihood value for the J-factor and its confidence intervals. We validate this method, in particular its bias and coverage, using simulated data from the Gaia Challenge. We find that the method possesses good statistical properties. The J-factors and their uncertainties are generally in good agreement with the Bayesian-derived values, with the largest deviations restricted to the systems with the smallest kinematic datasets. We discuss improvements, extensions, and future applications of this technique.
J-factors (or D-factors) describe the distribution of dark matter in an astrophysical system and determine the strength of the signal provided by annihilating (or decaying) dark matter respectively. We provide simple analytic formulae to calculate th
For models in which dark matter annihilation is Sommerfeld-enhanced, the annihilation cross section increases at low relative velocities. Dwarf spheroidal galaxies (dSphs) have low characteristic dark matter particle velocities and are thus ideal can
We calculate the effective $J$-factors, which determine the strength of indirect detection signals from dark matter annihilation, for 25 dwarf spheroidal galaxies (dSphs). We consider several well-motivated assumptions for the relative velocity depen
Dwarf spheroidal (dSph) galaxies are among the most promising targets for the indirect detection of dark matter (DM) from annihilation and/or decay products. Empirical estimates of their DM content - and hence the magnitudes of expected signals - rel
This white paper describes the basic idea for indirect dark matter searches using antideuterons. Low energy antideuterons produced by dark matter annihilations/decays provide an attractive dark matter signature, due to the low astrophysical backgroun