ﻻ يوجد ملخص باللغة العربية
We investigate the combined effect of solar wind, Poynting-Robertson drag, and the frozen-in interplanetary magnetic field on the motion of charged dust grains in our solar system. For this reason we derive a secular theory of motion by the means of averaging method and validate it with numerical simulations of the un-averaged equations of motions. The theory predicts that the secular motion of charged particles is mainly affected by the z-component of the solar magnetic axis, or the normal component of the interplanetary magnetic field. The normal component of the interplanetary magnetic field leads to an increase or decrease of semi-major axis depending on its functional form and sign of charge of the dust grain. It is generally accepted that the combined effects of solar wind and photon absorption and re-emmision (Poynting-Robertson drag) lead to a decrease in semi-major axis on secular time scales. On the contrary, we demonstrate that the interplanetary magnetic field may counteract these drag forces under certain circumstances. We derive a simple relation between the parameters of the magnetic field, the physical properties of the dust grain as well as the shape and orientation of the orbital ellipse of the particle, which is a necessary conditions for the stabilization in semi-major axis.
The effect of solar or stellar radiation on dust particles trajectories (the Poynting-Robertson drag) has been studied by a number of authors and applied to interplanetary dust dynamics in numerical computations. Meanwhile some important features of
The extended minimum of Solar Cycle 23, the extremely quiet solar-wind conditions prevailing, and the mini-maximum of Solar Cycle 24 drew global attention and many authors have since attempted to predict the amplitude of the upcoming Solar Cycle 25,
Objectives: A systematic study on the general relativistic Poynting-Robertson effect has been developed so far by introducing different complementary approaches, which can be mainly divided in two kinds: (1) improving the theoretical assessments and
We calculate the interplanetary magnetic field path lengths traveled by electrons in solar electron events detected by the WIND 3DP instrument from $1994$ to $2016$. The velocity dispersion analysis method is applied for electrons at energies of $sim
We investigate the dynamics of charged dust interacting with the interplanetary magnetic field in a Parker spiral type model and subject to the solar wind and Poynting-Robertson effect in the vicinity of the 1:1 mean motion resonance with planet Jupi