ﻻ يوجد ملخص باللغة العربية
A multiply-lensed galaxy, MACS0647-JD, with a probable photometric redshift of $zsimeq 10.7^{+0.6}_{-0.4}$ is claimed to constitute one of the very earliest known galaxies, formed well before reionization was completed. However, spectral evidence that MACS0647-JD lies at high redshift has proven infeasible and so here we seek an independent lensing based geometric redshift derived from the angles between the three lensed images of MACS0647-JD, using our free-form mass model (WSLAP+) for the lensing cluster MACSJ0647.7+7015 (at $z=0.591$). Our lens model uses the 9 sets of multiple images, including those of MACS0647-JD, identified by the CLASH survey towards this cluster. We convincingly exclude the low redshift regime of $z<3$, for which convoluted critical curves are generated by our method, as the solution bends to accommodate the wide angles of MACS0647-JD for this low redshift. Instead, a best fit to all sets of lensed galaxy positions and redshifts provides a geometric redshift of $zsimeq 10.8^{+0.3}_{-0.4}$ for MACS0647-JD, strongly supporting the higher photometric redshift solution. Importantly, we find a tight linear relation between the relative brightnesses of all 9 sets of multiply lensed images and their relative magnifications as predicted by our model. This agreement provides a benchmark for the quality of the lens model, and establishes the robustness of our free-form lensing method for measuring model-independent geometric source distances and for deriving objective central cluster mass distributions. After correcting for its magnification the luminosity of MACS0647-JD remains relatively high at $M_{UV}=-19.4$, which is within a factor of a few in flux of some surprisingly luminous $zsimeq 10$--$11$ candidates discovered recently in Hubble black field surveys.
A new method is presented for modelling the physical properties of galaxy clusters. Our technique moves away from the traditional approach of assuming specific parameterised functional forms for the variation of physical quantities within the cluster
We present the rest-frame optical spectrum of a strongly lensed galaxy at redshift z =1.7 behind the cluster Abell 1689. We detect the temperature sensitive auroral line [O III] 4363, which allows the first direct metallicity measurement for galaxies
We take advantage of gravitational lensing amplification by Abell 1689 (z=0.187) to undertake the first space-based census of emission line galaxies (ELGs) in the field of a massive lensing cluster. Forty-three ELGs are identified to a flux of i_775=
We report the detection of a massive neutral gas outflow in the z=2.09 gravitationally lensed Dusty Star-Forming Galaxy HATLASJ085358.9+015537 (G09v1.40), seen in absorption with the OH+(1_1-1_0) transition using spatially resolved (0.5x0.4) Atacama
We present a candidate for the most distant galaxy known to date with a photometric redshift z = 10.7 +0.6 / -0.4 (95% confidence limits; with z < 9.5 galaxies of known types ruled out at 7.2-sigma). This J-dropout Lyman Break Galaxy, named MACS0647-