ترغب بنشر مسار تعليمي؟ اضغط هنا

Tunable orbital angular momentum in high-harmonic generation

84   0   0.0 ( 0 )
 نشر من قبل David Gauthier
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Optical vortices are currently one of the most intensively studied topics in optics. These light beams, which carry orbital angular momentum (OAM), have been successfully utilized in the visible and infrared in a wide variety of applications. Moving to shorter wavelengths may open up completely new research directions in the areas of optical physics and material characterization. Here, we report on the generation of extreme-ultraviolet optical vortices with femtosecond duration carrying a controllable amount of OAM. From a basic physics viewpoint, our results help to resolve key questions such as the conservation of angular momentum in highly-nonlinear light-matter interactions, and the disentanglement and independent control of the intrinsic and extrinsic components of the photons angular momentum at short-wavelengths. The methods developed here will allow testing some of the recently proposed concepts such as OAM-induced dichroism, magnetic switching in organic molecules, and violation of dipolar selection rules in atoms.

قيم البحث

اقرأ أيضاً

100 - F. Kong , C. Zhang , H. Larocque 2018
The interplay between spin and orbital angular momentum in the up-conversion process allows us to control the macroscopic wave front of high harmonics by manipulating the microscopic polarizations of the driving field. We demonstrate control of orbit al angular momentum in high harmonic generation from both solid and gas phase targets using the selection rules of spin angular momentum. The gas phase harmonics extend the control of angular momentum to extreme-ultraviolet wavelength. We also propose a bi-color scheme to produce spectrally separated extreme-ultraviolet radiation carrying orbital angular momentum.
We present an experimental technique using orbital angular momentum (OAM) in a fundamental laser field to drive High Harmonic Generation (HHG). The mixing of beams with different OAM allows to generate two laser foci tightly spaced to study the phase and amplitude of HHG produced in diatomic nitrogen. Nitrogen is used as a well studied system to show the quality of OAM based HHG interferometry.
We experimentally study the behavior of orbital angular momentum (OAM) of light in a noncollinear second harmonic generation (SHG) process. The experiment is performed by using a type I BBO crystal under phase matching conditions with femtosecond pum ping fields at 830 nm. Two specular off-axis vortex beams carrying fractional orbital angular momentum at the fundamental frequency (FF) are used. We analyze the behavior of the OAM of the SH signal when the optical vortex of each input field at the FF is displaced from the beams axis. We obtain different spatial configurations of the SH field, always carrying the same zero angular momentum.
Light with spatiotemporal orbital angular momentum (ST-OAM) is a recently discovered type of structured and localized electromagnetic field. This field carries characteristic space-time spiral phase structure and transverse intrinsic OAM. In this wor k, we present the generation and characterization of the second-harmonic of ST-OAM pulses. We uncovered the conservation of transverse OAM in a second-harmonic generation process, where the space-time topological charge of the fundamental field is doubled along with the optical frequency. Our experiment thus suggests a general ST-OAM nonlinear scaling rule - analogous to that in conventional OAM of light. Furthermore, we observe that the topology of a second-harmonic ST-OAM pulse can be modified by complex spatiotemporal astigmatism, giving rise to multiple phase singularities separated in space and time. Our study opens a new route for nonlinear conversion and scaling of light carrying ST-OAM with the potential for driving other secondary ST-OAM sources of electromagnetic fields and beyond.
Non-Hermitian exceptional points (EPs) represent a special type of degeneracy where not only the eigenvalues coalesce, but also the eigenstates tend to collapse on each other. Recent studies have shown that in the presence of an EP, light-matter inte ractions are profoundly modified, leading to a host of novel optical phenomena ranging from enhanced sensitivity to chiral light transport. As of now, however, in order to stabilize a system at the vicinity of an exceptional point, its related parameters must be carefully tuned and/or continuously controlled. To overcome this limitation, here we introduce a new family of broadband exceptional points based on unidirectional coupling, implemented by incorporating an Sshaped waveguide in a microring cavity. In active settings, the resulting unidirectionality exhibits unprecedented resilience to perturbations, thus providing a robust and tunable approach for directly generating beams with distinct orbital angular momentum (OAM). This work could open up new possibilities for manipulating OAM degrees of freedom in applications pertaining to telecommunications and quantum computing, while at the same time may expand the notions of non-Hermiticity in the orbital angular momentum space.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا