ترغب بنشر مسار تعليمي؟ اضغط هنا

Exploring extra dimensions with scalar waves

70   0   0.0 ( 0 )
 نشر من قبل Katherine Jones-Smith
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper provides a pedagogical introduction to the physics of extra dimensions focussing on the ADD, Randall-Sundrum and DGP models. In each of these models, the familiar particles and fields of the standard model are assumed to be confined to a four dimensional space-time called the brane; the brane is a slice through a higher dimensional space-time called the bulk. The geometry of the ADD, Randall-Sundrum and DGP space-times is described and the relation between Randall-Sundrum and Anti-de-Sitter space-time is explained. The necessary differential geometry background is introduced in an appendix that presumes no greater mathematical preparation than multivariable calculus. The ordinary wave equation and the Klein-Gordon equation are briefly reviewed followed by an analysis of the propagation of scalar waves in the bulk in all three extra-dimensional models. We also calculate the scalar field produced by a static point source located on the brane for all three models. For the ADD and Randall-Sundrum models at large distances the field looks like that of a point source in four space-time dimensions but at short distances it crosses over to a form appropriate to the higher dimensional space-time. For the DGP model the field has the higher dimensional form at long distances rather than short. The scalar field results provide qualitative insights into the corresponding behavior of gravitational fields. In particular the explanation within the ADD and Randall-Sundrum model of the weakness of gravity compared to other forces is discussed as are the implications of the two models for colliders and other experiments.

قيم البحث

اقرأ أيضاً

82 - F.Fucito 2000
In this talk I review recent progresses in the detection of scalar gravitational waves. Furthermore, in the framework of the Jordan-Brans-Dicke theory, I compute the signal to noise ratio for a resonant mass detector of spherical shape and for binary sources and collapsing stars. Finally I compare these results with those obtained from laser interferometers and from Einsteinian gravity.
We discuss the uniqueness of asymptotically flat and static spacetimes in the $n$-dimensional Einstein-conformal scalar system. This theory potentially has a singular point in the field equations where the effective Newton constant diverges. We will show that the static spacetime with the conformal scalar field outside a certain surface $S_p$ associated with the singular point is unique.
We present exact dynamical and inhomogeneous solutions in three-dimensional AdS gravity with a conformally coupled scalar field. They contain stealth configurations of the scalar field overflying the BTZ spacetime and also solutions with a non-vanish ing energy-momentum tensor. The latter non-stealth class consists of the solution obtained by Xu and its analytic extension. It is shown that this proper extension represents: (i) an eternally shrinking dynamical black hole, (ii) a curious spacetime which admits an event horizon without any trapped surface, or (iii) gravitational collapse of a scalar field in an asymptotically AdS spacetime. In the last case, by attaching the solution regularly to the past massless BTZ spacetime with a vanishing scalar field, the whole spacetime represents the black-hole formation from regular initial data in an asymptotically AdS spacetime. Depending on the parameters, the formed black hole can be asymptotically static in far future.
Two new observational windows have been opened to strong gravitational physics: gravitational waves, and very long baseline interferometry. This suggests observational searches for new phenomena in this regime, and in particular for those necessary t o make black hole evolution consistent with quantum mechanics. We describe possible features of compact quantum objects that replace classical black holes in a consistent quantum theory, and approaches to observational tests for these using gravitational waves. This is an example of a more general problem of finding consistent descriptions of deviations from general relativity, which can be tested via gravitational wave detection. Simple models for compact modifications to classical black holes are described via an effective stress tensor, possibly with an effective equation of state. A general discussion is given of possible observational signatures, and of their dependence on properties of the colliding objects. The possibility that departures from classical behavior are restricted to the near-horizon regime raises the question of whether these will be obscured in gravitational wave signals, due to their mutual interaction in a binary coalescence being deep in the mutual gravitational well. Numerical simulation with such simple models will be useful to clarify the sensitivity of gravitational wave observation to such highly compact departures from classical black holes.
The direct detection of gravitational waves crowns decades of efforts in the modelling of sources and of increasing detectors sensitivity. With future third-generation Earth-based detectors or space-based observatories, gravitational-wave astronomy w ill be at its full bloom. Previously brushed-aside questions on environmental or other systematic effects in the generation and propagation of gravitational waves are now begging for a systematic treatment. Here, we study how electromagnetic and gravitational radiation is scattered by a binary system. Scattering cross-sections, resonances and the effect of an impinging wave on a gravitational-bound binary are worked out for the first time. The ratio between the scattered-wave amplitude and the incident wave can be of order $10^{-5}$ for known pulsars, bringing this into the realm of future gravitational-wave observatories. For currently realistic distribution of compact-object binaries, the interaction cross-section is too small to be of relevance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا