ﻻ يوجد ملخص باللغة العربية
The standard quantum limit constrains the precision of an oscillator position measurement. It arises from a balance between the imprecision and the quantum back-action of the measurement. However, a measurement of only a single quadrature of the oscillator can evade the back-action and be made with arbitrary precision. Here we demonstrate quantum back-action evading measurements of a collective quadrature of two mechanical oscillators, both coupled to a common microwave cavity. The work allows for quantum state tomography of two mechanical oscillators, and provides a foundation for macroscopic mechanical entanglement and force sensing beyond conventional quantum limits.
The quantum measurement of any observable naturally leads to noise added by the act of measurement. Approaches to evade or reduce this noise can lead to substantial improvements in a wide variety of sensors, from laser interferometers to precision ma
We study the back-action of a nearby measurement device on electrons undergoing coherent transfer via adiabatic passage (CTAP) in a triple-well system. The measurement is provided by a quantum point contact capacitively coupled to the middle well, th
A quantum theory of cooling of a mechanical oscillator by radiation pressure-induced dynamical back-action is developed, which is analogous to sideband cooling of trapped ions. We find that final occupancies well below unity can be attained when the
We report on a back-action evading (BAE) measurement of the photon number of fiber optical solitons operating in the quantum regime. We employ a novel detection scheme based on spectral filtering of colliding optical solitons. The measurements of the
We address the interaction between two quantum systems (A and B) that is mediated by their common linear environment. If the environment is out of equilibrium the resulting interaction violates Onsager relations and cannot be described by a Hamiltoni