ﻻ يوجد ملخص باللغة العربية
The purpose of this article is to exploit the geometric structure of Quantum Mechanics and of statistical manifolds to study the qualitative effect that the quantum properties have in the statistical description of a system. We show that the end points of geodesics in the classical setting coincide with the probability distributions that minimise Shannons Entropy, i.e. with distributions of zero dispersion. In the quantum setting this happens only for particular initial conditions, which in turn correspond to classical submanifolds. This result can be interpreted as a geometric manifestation of the uncertainty principle.
A function of positive type can be defined as a positive functional on a convolution algebra of a locally compact group. In the case where the group is abelian, by Bochners theorem a function of positive type is, up to normalization, the Fourier tran
Invariant operator-valued tensor fields on Lie groups are considered. These define classical tensor fields on Lie groups by evaluating them on a quantum state. This particular construction, applied on the local unitary group U(n)xU(n), may establish
A new canonical divergence is put forward for generalizing an information-geometric measure of complexity for both, classical and quantum systems. On the simplex of probability measures it is proved that the new divergence coincides with the Kullback
This paper presents the momentum map structures which emerge in the dynamics of mixed states. Both quantum and classical mechanics are shown to possess analogous momentum map pairs. In the quantum setting, the right leg of the pair identifies the Ber
In this paper, we will review the co-adjoint orbit formulation of finite dimensional quantum mechanics, and in this framework, we will interpret the notion of quantum Fisher information index (and metric). Following previous work of part of the autho