ﻻ يوجد ملخص باللغة العربية
It was suggested that a tension between the mass-squared differences obtained from the solar neutrino and KamLAND experiments can be solved by introducing the non-standard flavor-dependent interaction in neutrino propagation. In this paper we discuss the possibility to test such a hypothesis by atmospheric neutrino observations at the future Hyper-Kamiokande experiment. Assuming that the mass hierarchy is known, we find that the best-fit value from the solar neutrino and KamLAND data can be tested at more than 8 $sigma$, while the one from the global analysis can be examined at 5.0 $sigma$ (1.4 $sigma$) for the normal (inverted) mass hierarchy.
In this talk we discuss the possibility to test the hypothesis, which has been proposed to explain the tension between the mass-squared differences of the solar neutrino and KamLAND experiments by the non-standard flavor-dependent interaction in neut
If the flavor dependent non-standard interactions (NSI) in neutrino propagation exist, then the matter effect is modified and the modification is parametrized by the dimensionless parameter $epsilon_{alphabeta}~(alpha,beta=e, mu, tau)$. In this paper
In this work we study the the sensitivity of the T2HKK experiment to probe non-standard interaction in neutrino propagation. As this experiment will be statistically dominated due to its large detector volume and high beam-power, it is expected that
We study the effects of non-standard interactions on the oscillation pattern of atmospheric neutrinos. We use neutrino oscillograms as our main tool to infer the role of non-standard interactions (NSI) parameters at the probability level in the energ
We study non-standard interactions (NSIs) at reactor neutrino experiments, and in particular, the mimicking effects on theta_13. We present generic formulas for oscillation probabilities including NSIs from sources and detectors. Instructive mappings