ترغب بنشر مسار تعليمي؟ اضغط هنا

The MOSDEF survey: AGN multi-wavelength identification, selection biases and host galaxy properties

117   0   0.0 ( 0 )
 نشر من قبل Mojegan Azadi
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present results from the MOSFIRE Deep Evolution Field (MOSDEF) survey on the identification, selection biases, and host galaxy properties of 55 X-ray, IR and optically-selected active galactic nuclei (AGN) at $1.4 < z < 3.8$. We obtain rest-frame optical spectra of galaxies and AGN and use the BPT diagram to identify optical AGN. We examine the uniqueness and overlap of the AGN identified at different wavelengths. There is a strong bias against identifying AGN at any wavelength in low mass galaxies, and an additional bias against identifying IR AGN in the most massive galaxies. AGN hosts span a wide range of star formation rate (SFR), similar to inactive galaxies once stellar mass selection effects are accounted for. However, we find (at $sim 2-3sigma$ significance) that IR AGN are in less dusty galaxies with relatively higher SFR and optical AGN in dusty galaxies with relatively lower SFR. X-ray AGN selection does not display a bias with host galaxy SFR. These results are consistent with those from larger studies at lower redshifts. Within star-forming galaxies, once selection biases are accounted for, we find AGN in galaxies with similar physical properties as inactive galaxies, with no evidence for AGN activity in particular types of galaxies. This is consistent with AGN being fueled stochastically in any star-forming host galaxy. We do not detect a significant correlation between SFR and AGN luminosity for individual AGN hosts, which may indicate the timescale difference between the growth of galaxies and their supermassive black holes.



قيم البحث

اقرأ أيضاً

We investigate the effect of environment on the presence and fuelling of Active Galactic Nuclei (AGN) by identifying galaxies hosting AGN in massive galaxy clusters and the fields around them. We have identified AGN candidates via optical variability (178), X-ray emission (74), and mid-IR SEDs (64) in multi- wavelength surveys covering regions centered on 12 galaxy clusters at redshifts 0.5 < z < 0.9. In this paper, we present the radial distribution of AGN in clusters to examine how local environment affects the presence of an AGN and its host galaxy. While distributions vary from cluster to cluster, we find that the radial distribution of AGN generally differs from that of normal galaxies. AGN host galaxies also show a different colour distribution than normal galaxies, with many AGN hosts displaying galaxy colours in the green valley between the red sequence and blue star-forming normal galaxies. This result is similar to those found in field galaxy studies. The colour distribution of AGN hosts is more pronounced in disturbed clusters where minor mergers, galaxy harassment, and interactions with cluster substructure may continue to prompt star-formation in the hosts. However, we find no relationship between host galaxy colour and cluster radius among AGN hosts. This may indicate that processes related to the accreting supermassive black hole have a greater impact on the star-forming properties of the host galaxy than the intracluster medium and/or local galaxy environment.
182 - J. F. Radcliffe 2021
Obtaining a census of active galactic nuclei (AGN) activity across cosmic time is critical to our understanding of galaxy evolution and formation. Many AGN classification techniques are compromised by dust obscuration. However, very long baseline int erferometry (VLBI) can be used to identify compact emission that can only be attributed to AGN activity. This is the second in a series of papers dealing with the compact radio population in the GOODS-N field. We review 14 different AGN classification techniques in the context of a VLBI-detected sample, and use these to investigate the nature of the AGN as well as their host galaxies. We find that no single identification technique can identify all VLBI objects as AGN. Infrared colour-colour selection is most notably incomplete. However, the usage of multiple classification schemes can identify all VLBI-selected AGN, independently verifying similar approaches used in other deep field surveys. In the era of large area surveys with instruments such as the SKA and ngVLA, multi-wavelength coverage, which relies heavily upon observations from space, is often unavailable. Therefore, VLBI remains an integral component in detecting AGN of the jetted efficient and inefficient accretion types. A substantial fraction (46%) of the VLBI AGN have no X-ray counterpart, which is most likely due to lack of sensitivity in the X-ray band. A high fraction of the VLBI AGN reside in low or intermediate redshift dust-poor early-type galaxies. These most likely exhibit inefficient accretion. Finally, a significant fraction of the VLBI AGN reside in symbiotic dusty starburst - AGN systems. We present an extensive compilation of the multi-wavelength properties of all the VLBI-selected AGN in GOODS-N in the Appendix.
We present a comparative study of X-ray and IR selected AGNs at $zapprox2$ to highlight the importance of the AGN selection effects on the distributions of star formation (SF) and morphological properties of the host galaxies. We find that while the median SF of X-ray AGN hosts are similar to non-AGN star forming galaxies (SFGs), the incidence of X-ray AGNs, q$_{rm{AGN}}$, is higher among galaxies with suppressed SF and larger stellar mass surface density within both the half-light radius ($Sigma_e$) and the central 1 kpc ($Sigma_{rm{1kpc}}$), IR AGN hosts are different. They are less massive, have elevated SF and share similar distributions of colors, $Sigma_e$ and $Sigma_{rm{1kpc}}$ with normal SFGs. Given that $Sigma_e$ and $Sigma_{rm{1kpc}}$ strongly correlate with stellar mass (M$_*$), we introduce $frac{M_{rm{1kpc}}}{M_*}$, the fractional mass within central 1 kpc, to quantify galaxy compactness, which is independent on M$_*$. Both AGN populations have similar $frac{M_{rm{1kpc}}}{M_*}$ distributions to normal SFGs. We show that while q$_{rm{AGN}}$ increases with both $Sigma_e$ and $Sigma_{rm{1kpc}}$, it remains constant with $frac{M_{rm{1kpc}}}{M_*}$, indicating that the trend of increasing q$_{rm{AGN}}$ with $Sigma$ is driven by M$_*$. While our findings are not in conflict with the scenario of AGN quenching, they do not directly imply it either, because the incidence of AGNs being hosted by transitional galaxies depends crucially on AGN selections. The additional evidence that no clear correlation is observed between SF and AGN bolometric luminosity, regardless of the selection, calls into question the notion that AGNs are the direct cause of quenching in $zapprox2$ massive galaxies.
Changing-look Active Galactic Nuclei (CL-AGNs) are a subset of AGNs in which the broad Balmer emission lines appear or disappear within a few years. We use the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey to identify five CL-AGN s. The 2-D photometric and kinematic maps reveal common features as well as some unusual properties of CL-AGN hosts as compared to the AGN hosts in general. All MaNGA CL-AGNs reside in the star-forming main sequence, similar to MaNGA non-changing-look AGNs (NCL-AGNs). The $80% pm 16%$ of our CL-AGNs do possess pseudo-bulge features, and follow the overall NCL-AGNs $M_{BH}-sigma_{*}$ relationship. The kinematic measurements indicate that they have similar distributions in the plane of angular momentum versus galaxy ellipticity. MaNGA CL-AGNs however show a higher, but not statistically significant ($20% pm 16%$) fraction of counter-rotating features compared to that ($1.84% pm 0.61%$) in general star-formation population. In addition, MaNGA CL-AGNs favor more face-on (axis ratio $>$ 0.7) than that of Type I NCL-AGNs. These results suggest that host galaxies could play a role in the CL-AGN phenomenon.
The coeval AGN and galaxy evolution and the observed local relations between SMBHs and galaxy properties suggest some connection or feedback between SMBH growth and galaxy build-up. We looked for correlations between properties of X-ray detected AGN and their FIR detected host galaxies, to find quantitative evidences for this connection, highly debated in the latest years. We exploit the rich multi-wavelength data set available in the COSMOS field for a large sample (692 sources) of AGN and their hosts, in the redshift range $0.1<z<4$. We use X-ray data to select AGN and determine their properties (intrinsic luminosity and nuclear obscuration), and broad-band SED fitting to derive host galaxy properties (stellar mass $M_*$ and star formation rate SFR). We find that the AGN 2-10 keV luminosity ($L_{rm X}$) and the host $8-1000~mu m$ star formation luminosity ($L_{rm IR}^{rm SF}$) are significantly correlated. However, the average host $L_{rm IR}^{rm SF}$ has a flat distribution in bins of AGN $L_{rm X}$, while the average AGN $L_{rm X}$ increases in bins of host $L_{rm IR}^{rm SF}$, with logarithmic slope of $sim0.7$, in the redshifts range $0.4<z<1.2$. We also discuss the comparison between the distribution of these two quantities and the predictions from hydro-dynamical simulations. Finally we find that the average column density ($N_H$) shows a positive correlation with the host $M_*$, at all redshifts, but not with the SFR (or $L_{rm IR}^{rm SF}$). This translates into a negative correlation with specific SFR. Our results are in agreement with the idea that BH accretion and SF rates are correlated, but occur with different variability time scales. The presence of a positive correlation between $N_H$ and host $M_*$ suggests that the X-ray $N_H$ is not entirely due to the circum-nuclear obscuring torus, but may also include a contribution from the host galaxy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا