ﻻ يوجد ملخص باللغة العربية
The accretion of interstellar medium onto the central super massive black holes is widely accepted as the source of the gigantic energy released by the active galactic nuclei. But few pieces of observational evidence have been confirmed directly demonstrating the existence of the inflows. The absorption line system in the spectra of quasar SDSS J112526.12+002901.3 presents an interesting example, in which the rarely detected hydrogen Balmer and metastable He I absorption lines are found redshifted to the quasars rest frame along with the low-ionization metal absorption lines Mg II, Fe II, etc. The repeated SDSS spectroscopic observations suggest a transverse velocity smaller than the radial velocity. The motion of the absorbing medium is thus dominated by infall. The He I* lines present a powerful probe to the strength of ionizing flux, while the Balmer lines imply a dense environment. With the help of photoionization simulations, we find the absorbing medium is exposed to the radiation with ionization parameter $Uapprox 10^{-1.8}$, and the density is $n(mathrm{H})approx 10^9 mathrm{cm}^{-3}$. Thus the absorbing medium is located $sim 4 mathrm{pc}$ away from the central engine. According to the similarity in the distance and physical conditions between the absorbing medium and the torus, we strongly propose the absorption line system as a candidate for the accretion inflow which originates from the inner surface of the torus.
We report the identification of an unusual absorption line system in the quasar SDSS J080248.18$+$551328.9 and present a detailed study of the system, incorporating follow-up optical and NIR spectroscopy. A few tens of absorption lines are detected,
I report the discovery of blueshifted broad absorption line (BAL) troughs in at least six transitions of the Balmer series of hydrogen (Hbeta to H9) and in CaII, MgII and excited FeII in the quasar SDSS J125942.80+121312.6. This is only the fourth ac
I present the discovery of Balmer-line absorption from H alpha to H9 in iron low-ionizaton broad absorption line (FeLoBAL) quasar, SDSS~J172341.10+555340.5 by near-infrared spectroscopy with the Cooled Infrared Spectrograph and Camera for OHS (CISCO)
FeLoBALs are a rare class of quasar outflows with low-ionization broad absorption lines (BALs), large column densities, and potentially large kinetic energies that might be important for `feedback to galaxy evolution. In order to probe the physical p
We here report an identification of SDSS J090152.04+624342.6 as a new overlapping-trough iron low-ionization broad absorption line quasar at redshift of $zsim2.1$. No strong variation of the broad absorption lines can be revealed through the two spec