ﻻ يوجد ملخص باللغة العربية
The development of a set of high-order accurate finite-volume formulations for evaluation of the pressure gradient force in layered ocean models is described. A pair of new schemes are presented, both based on an integration of the contact pressure force about the perimeter of an associated momentum control-volume. The two proposed methods differ in their choice of control-volume geometries. High-order accurate numerical integration techniques are employed in both schemes to account for non-linearities in the underlying equation-of-state definitions and thermodynamic profiles, and details of an associated vertical interpolation and quadrature scheme are discussed in detail. Numerical experiments are used to confirm the consistency of the two formulations, and it is demonstrated that the new methods maintain hydrostatic and thermobaric equilibrium in the presence of strongly-sloping layer-wise geometry, non-linear equation-of-state definitions and non-uniform vertical stratification profiles. Additionally, one scheme is shown to maintain high levels of consistency in the presence of non-linear thermodynamic stratification. Use of the new pressure gradient force formulations for hybrid vertical coordinate and/or terrain-following general circulation models is discussed.
This paper describes a reduced-order quasi-geostrophic coupled ocean-atmosphere model that allows for an arbitrary number of atmospheric and oceanic modes to be retained in the spectral decomposition. The modularity of this new model allows one to ea
The purpose of this article is numerical verification of the thory of weak turbulence. We performed numerical simulation of an ensemble of nonlinearly interacting free gravity waves (swell) by two different methods: solution of primordial dynamical e
The stability properties of intermediate-order climate models are investigated by computing their Lyapunov exponents (LEs). The two models considered are PUMA (Portable University Model of the Atmosphere), a primitive-equation simple general circulat
By performing two parallel numerical experiments -- solving the dynamical Hamiltonian equations and solving the Hasselmann kinetic equation -- we examined the applicability of the theory of weak turbulence to the description of the time evolution of
The mass balance of mountain glaciers is of interest for several applications (local hydrology or climate projections), and turbulent fluxes can be an important contributor to glacier surface mass balance during strong melting events. The underlying