ﻻ يوجد ملخص باللغة العربية
It is known that there are lattice models in which non-interacting particles get dynamically localized when periodic $delta$-function kicks are applied with a particular strength. We use both numerical and analytical methods to study the effects of interactions in three different models in one dimension. The systems we have considered include spinless fermions with interactions between nearest-neighbor sites, the Hubbard model of spin-1/2 fermions, and the Bose Hubbard model with on-site interactions. We derive effective Floquet Hamiltonians up to second order in the time period of kicking. Using these we show that interactions can give rise to a variety of interesting results such as two-body bound states in all three models and dispersionless many-body bound states for spinless fermions and bosons. We substantiate these results by exact diagonalization and stroboscopic time evolution of systems with a finite number of particles. We derive a low-energy pseudo-spin-1/2 limit of the Bose Hubbard system in the thermodynamic limit and show that a special case of this has an exponentially large number of ground states. Finally we study the effect of changing the strength of the $delta$-function kicks slightly away from perfect dynamical localization; we find that a single particle remains dynamically localized for a long time after which it moves ballistically.
Quantum phases of matter have many relevant applications in quantum computation and quantum information processing. Current experimental feasibilities in diverse platforms allow us to couple two or more subsystems in different phases. In this letter,
Periodically driven quantum many-body systems support anomalous topological phases of matter, which cannot be realized by static systems. In many cases, these anomalous phases can be many-body localized, which implies that they are stable and do not
Electrons in a lattice exhibit time-periodic motion, known as Bloch oscillation, when subject to an additional static electric field. Here we show that a corresponding dynamics can occur upon replacing the spatially periodic potential by a time-perio
We examine skyrmions driven periodically over random quenched disorder and show that there is a transition from reversible motion to a state in which the skyrmion trajectories are chaotic or irreversible. We find that the characteristic time required
We study the quantum dynamics of Bose-Einstein condensates when the scattering length is modulated periodically or quasi-periodically in time within the Bogoliubov framework. For the periodically driven case, we consider two protocols where the modul