ترغب بنشر مسار تعليمي؟ اضغط هنا

Acoustic properties of glacial ice for neutrino detection and the Enceladus Explorer

117   0   0.0 ( 0 )
 نشر من قبل Ruth Hoffmann
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English
 تأليف K. Helbing




اسأل ChatGPT حول البحث

Ultra high energy neutrinos may be observed in ice by the emission of acoustic signals. The SPATS detector has investigated the possibility of observing GZK-neutrinos in the clear ice near the South Pole at the IceCube detector site. To explore other potential detection sites glacial ice in the Alps and in Antarctica has been surveyed for its acoustical properties. The purpose of the Enceladus Explorer (EnEx), on the other hand, is the search for extraterrestrial life on the Saturn moon Enceladus. Here acoustics is used to maneuver a subsurface probe inside the ice by trilateration of signals. A system of acoustic transducers has been developed to study both applications. In the south polar region of the moon Enceladus there are secluded crevasses. These are filled with liquid water, probably heated by tidal forces due to the short distance to Saturn. We intend to take a sample of water from these crevasses by using a combination of a melt down and steering probe called IceMole (IM). Maneuvering IM requires a good understanding of ice properties such as the speed of sound, the attenuation of acoustic signals in ice, their directional dependencies and their dependence on different frequencies. The technology developed for this positioning system could also contribute to the design of future large scale acoustic neutrino detectors. We present our analysis methods and the findings on attenuation, sound speed, and frequency response obtained at several sites in the Alps and Antarctica.



قيم البحث

اقرأ أيضاً

Using data collected by the Askaryan Radio Array (ARA) experiment at the South Pole, we have used long-baseline propagation of radio-frequency signals to extract information on the radio-frequency index-of-refraction in South Polar ice. Owing to the increasing ice density over the upper 150--200 meters, rays are observed along two, nearly parallel paths, one of which is direct and a second which refracts through an inflection point, with differences in both arrival time and arrival angle that can be used to constrain the neutrino properties. We also observe indications, for the first time, of radio-frequency ice birefringence for signals propagating along predominantly horizontal trajectories, corresponding to an asymmetry of order 0.1% between the ordinary and extra-ordinary paths, numerically compatible with previous measurements of birefringent asymmetries for vertically-propagating radio-frequency signals at South Pole. Taken together, these effects offer the possibility of redundantly measuring the range from receiver to a neutrino interaction in Antarctic ice, if receiver antennas are deployed at shallow (25 m<z<100 m) depths. Such range information is essential in determining both the neutrino energy, as well as the incident neutrino direction.
The PTOLEMY experiment (Princeton Tritium Observatory for Light, Early-Universe, Massive-Neutrino Yield) aims to achieve the sensitivity required to detect the relic neutrino background through a combination of a large area surface-deposition tritium target, MAC-E filter methods, cryogenic calorimetry, and RF tracking and time-of-flight systems. A small-scale prototype is in operation at the Princeton Plasma Physics Laboratory with the goal of validating the technologies that would enable the design of a 100 gram PTOLEMY. With precision calorimetry in the prototype setup, the limitations from quantum mechanical and Doppler broadening of the tritium target for different substrates will be measured, including graphene substrates. Beyond relic neutrino physics, sterile neutrinos contributing to the dark matter in the universe are allowed by current constraints on partial contributions to the number of active neutrino species in thermal equilibrium in the early universe. The current PTOLEMY prototype is expected to have unique sensitivity in the search for sterile neutrinos with electron-flavor content for masses of 0.1--1keV, where less stringent, 10eV, energy resolution is required. The search for sterile neutrinos with electron-flavor content with the 100g PTOLEMY is expected to reach the level $|U_{e4}|^2$ of $10^{-4}$--$10^{-6}$, depending on the sterile neutrino mass.
92 - S. Bevan , A. Brown , S. Danaher 2009
The production of acoustic signals from the interactions of ultra-high energy (UHE) cosmic ray neutrinos in water and ice has been studied. A new computationally fast and efficient method of deriving the signal is presented. This method allows the im plementation of up to date parameterisations of acoustic attenuation in sea water and ice that now includes the effects of complex attenuation, where appropriate. The methods presented here have been used to compute and study the properties of the acoustic signals which would be expected from such interactions. A matrix method of parameterising the signals, which includes the expected fluctuations, is also presented. These methods are used to generate the expected signals that would be detected in acoustic UHE neutrino telescopes.
Muons created by $ u_mu$ charged current (CC) interactions in the water surrounding the ANTARES neutrino telescope have been almost exclusively used so far in searches for cosmic neutrino sources. Due to their long range, highly energetic muons induc ing Cherenkov radiation in the water are reconstructed with dedicated algorithms that allow the determination of the parent neutrino direction with a median angular resolution of about unit{0.4}{degree} for an $E^{-2}$ neutrino spectrum. In this paper, an algorithm optimised for accurate reconstruction of energy and direction of shower events in the ANTARES detector is presented. Hadronic showers of electrically charged particles are produced by the disintegration of the nucleus both in CC and neutral current (NC) interactions of neutrinos in water. In addition, electromagnetic showers result from the CC interactions of electron neutrinos while the decay of a tau lepton produced in $ u_tau$ CC interactions will in most cases lead to either a hadronic or an electromagnetic shower. A shower can be approximated as a point source of photons. With the presented method, the shower position is reconstructed with a precision of about unit{1}{metre}, the neutrino direction is reconstructed with a median angular resolution between unit{2}{degree} and unit{3}{degree} in the energy range of SIrange{1}{1000}{TeV}. In this energy interval, the uncertainty on the reconstructed neutrino energy is about SIrange{5}{10}{%}. The increase in the detector sensitivity due to the use of additional information from shower events in the searches for a cosmic neutrino flux is also presented.
We have found a radio-wave-reflection effect in rock salt for the detection of ultra-high energy neutrinos which are expected to be generated in Greisen, Zatsepin, and Kuzmin (GZK) processes in the universe. When an UHE neutrino interacts with rock s alt or ice as a detection medium, a shower is generated. That shower is formed by hadronic and electromagnetic avalanche processes. The energy of the UHE neutrino shower converts to thermal energy through ionization processes. Consequently, the temperature rises along the shower produced by the UHE neutrino. The refractive index of the medium rises with temperature. The irregularity of the refractive index in the medium leads to a reflection of radio waves. This reflection effect combined with the long attenuation length of radio waves in rock salt and ice would yield a new method to detect UHE neutrinos. We measured the phase of the reflected radio wave under irradiation with an electron beam on ice and rock salt powder. The measured phase showed excellent consistence with the power reflection fraction which was measured directly. A model taking into account the temperature change explained the phase and the amplitude of the reflected wave. Therefore the reflection mechanism was confirmed. The power reflection fraction was compared with that calculated with the Fresnel equations, the ratio between the measured result and that obtained with the Fresnel equations in ice was larger than that of rock salt.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا